• Title/Summary/Keyword: Two-photon probe

Search Result 9, Processing Time 0.022 seconds

Detection of Near-membrane Calcium Ions in Live Tissues with a Two-Photon Fluorescent Probe

  • Shin, Yu-Na;Lim, Chang-Su;Tian, Yu Shun;Rho, Won-Young;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.599-605
    • /
    • 2010
  • A two-photon fluorescent probe (ACaCL) that can detect near-membrane $Ca^{2+}$ is reported. This probe can be excited by 780 nm fs pulses, shows high photostability and negligible toxicity, and can visualize near-membrane $Ca^{2+}$ in live cells and deep inside live tissues by two-photon microscopy.

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young;Korystov, Dmitry;Jin, Young-Eup;Suh, Hong-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2253-2260
    • /
    • 2007
  • A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Femtosecond degenerate and nondegenerate pump-probe experiments in bulk GaAs below the band gap

  • Yahng, J. S.;Kim, D. S.;Fatti, N.Del;Vallee, F.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.100-103
    • /
    • 1997
  • We perform degenerate and nondegenerate pump-probe experiments on bulk GaAs at 100 K below the band gap. We mostly observe a negative differential transmission signal both in the degenerate and nondegenerate experiments. We interpret our signal as due to two-photon absorption. This negative signal has a different origin from the normally considered band gap renormalization for resonant excitations.

Development of Correction Technologies for Quantification of Photon Measurement in Bio-Luminescence Image (생체발광영상에서 포톤 검출 정량화를 위한 보정기법의 개발)

  • Tak, Yoon-Oh;Kim, Hyeon-Sik;Park, Hyeong-Ju;Choi, Heung-Kook;Choi, Eun-Seo;Hann, S.-Wook;Lee, Byeong-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.85-92
    • /
    • 2011
  • Bioluminescence imaging (BLI) is the most sensitive animal imaging technique for molecular imaging research. Generally, highly sensitive CCD is used to detect an optical probe introduced in a living mouse. However, in many cases, the light signal emitted from a probe is too small to detect because it is scattered and attenuated by the tissue prior to being detected. The problem is that scattering and attenuation not only inhibit accurate measurement but also make image quality down. Thus we introduced a new method to reduce noise by using property of CCD and method to improve image quality of bioluminescence image by using two steps Gaussian blurring.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Saturation Absorption Spectroscopy for Two Photon Coherence of 85Rb D1 lines (85Rb D1선에서 이광자 결맞음을 고려한 포화흡수 분광)

  • Nho, J.W.;Kang, M.I.;Ryu, J.W.;Moon, H.S.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.305-311
    • /
    • 2006
  • We propose a 7-level atom model, which takes into account two-photon coherence effects in saturation absorption spectroscopy. Using this model we explained spectral change with laser intensity and some of crossover resonance lines, which cannot be explained with Nakayama theory. The 7-level model consists of two upper levels and five lower levels, which account for $\pi-\pi$ polarization of both pump and probe beams in Zeeman sub levels. We compared our 7-level model with 4-level Nakayama theory for 5S$_{1/2}$ - 5P$_{1/2}$ transition line in $^{85}$Rb atoms. The results of the 7-level model calculation agree well the saturation absorption spectra data according to laser intensities.

Modeling and Experimental Study of Radio-frequency Glow Discharges and Applications for Plasma Processing

  • Kang, Nam-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.179-179
    • /
    • 2012
  • Low pressure radio-frequency glow discharges are investigated using theoretical modeling and various experimental diagnostic methods. In the calculations, global models and transformer models are developed to understand the chemical kinetics as well as the electrical properties such as the effective collision frequency, the heating mechanism and the power transferred to the plasma electrons. In addition, Boltzmann equation solver is used to compensate the effect of the electron energy distribution function (EEDF) shape in the global model, and the general expression of energy balance for non-Maxwellian electrons is developed. In the experiments, a number of traditional plasma diagnostic methods are used to compare with calculated results such as Langmuir probe, optical emission spectroscopy (OES), optical absorption spectroscopy (OAS) and two-photon absorption laser-induced fluorescence (TALIF). These theoretical and experimental methods are applied to understand several interesting phenomena in low pressure ICP discharges. The chemical and physical properties of low pressure ICP discharges are described and the applications of these methods are discussed.

  • PDF