• Title/Summary/Keyword: Two-photon microscope

Search Result 12, Processing Time 0.023 seconds

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

Development of line-scanning two-photon microscopy based on spatial and temporal focusing for tryptophan based auto fluorescence imaging (고속 트립토판 자가형광 이미징을 위한 시공간적 집중 기반의 라인 스캐닝 이광자 현미경 개발)

  • Lee, Jun Ho;Nam, Hyo Seok;Kim, Ki Hean
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.41-45
    • /
    • 2013
  • Two-photon microscopy (TPM) is minimally-invasive 3D fluorescence microscopy based on nonlinear excitation, and TPM can visualize cellular structures based on auto-fluorescence. Line-scanning TPM is one of high-speed TPM methods without sacrificing the image resolution by using spatial and temporal focusing. In this paper, we developed line-scanning TPM based on spatial and temporal focusing for auto-fluorescence imaging by exciting the tryptophan. Laser source for this system was an optical parametric oscillator (OPO) and it made near 570 nm femtosecond pulse laser. It had 200fs pulse width and 1.72 nm bandwidth, so that the achievable depth resolution was 2.41um and field of view (FOV) is 10.8um. From the characterization, our system has 3.0 um depth resolution and 12.3 um FOV. We visualized fixed leukocyte cell sample and compared with point scanning system.

Multi-focal Microscopic System Using a Fiber Bundle (광섬유 다발을 이용한 다초점 현미경)

  • Gu, Young-Mo;Ham, Hyo-Shick;Choi, Sung-Eul
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.354-360
    • /
    • 2009
  • We have constructed and analyzed the performance of a simple fiber bundle multi-focal microscope. The microscope had a fiber bundle substituted for micro-lens array that is the core part of MMM(multi-focal multi-photon microscope). The MMM is a type of confocal microscope. To analyze the performance and characteristics of the fiber bundle multi-focal microscope, three types of samples were used: a standard grating, USAF 1951(7, 3), and 1951(7, 6). Using two polarizers and a polarizing beam splitter, we eliminated noise and got clear images. We obtained the FWHM of fiber spot images with the standard grating using two different magnifier lenses which were 63X and 20X, and found an image of the sample as a distribution of fiber spot images. For this case we used the low magnification lens, which gives denser distribution, so that we could get clearer images. In order to test the resolution of the fiber bundle multi-focal microscopic system, we used the USAF 1951 sample which has a smaller line interval than that of the standard grating. The FWHM of the line width of the image coincides well with the real line width of the USAF 1951 sample. We confirmed the performance of a fiber bundle multi-focal microscopic system which is relatively simple but has submicron resolution and is able to get 1600 images at the same time.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Reduction of Current Crowding in InGaN-based Blue Light-Emitting Diodes by Modifying Metal Contact Geometry

  • Kim, Garam;Kim, Jang Hyun;Park, Euyhwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.588-593
    • /
    • 2014
  • Current crowding problem can worsen the internal quantum efficiency and the negative-voltage ESD of InGaN-based LEDs. In this paper, by using photon emission microscope and thermal emission microscope measurement, we confirmed that the electric field and the current of the InGaN-based LED sample are crowded in specific regions where the distance between p-type metal contact and n-type metal contact is shorter than other regions. To improve this crowding problem of electric field and current, modified metal contact geometry having uniform distance between the two contacts is proposed and verified by a numerical simulation. It is confirmed that the proposed structure shows better current spreading, resulting in higher internal quantum efficiency and reduced reverse leakage current.

Diffusion Coefficients of CdSe/CdS Quantum Rods in Water Measured Using Polarized Fluorescence Correlation Spectroscopy

  • Lee, Jaeran;Pack, Chan-Gi;Kim, Soo Yong;Kim, Sok Won
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.598-604
    • /
    • 2014
  • A polarization fluorescence correlation spectroscopy system based on a confocal microscope was built to study the rotational and translational diffusion of CdSe/CdS quantum rods (Q-rods), with the same and different polarization states between the polarizer and the analyzer (i.e. the XXX and XYY states). The rotational diffusion amplitude showed the dependences on polarization of $0.75{\pm}0.05$ in the XXX state and $0.26{\pm}0.03$ in the XYY state, when the translational diffusion amplitude was 1. The diffusion coefficients of the Q-rods were found based on their translational and rotational diffusion times in the two polarization states, in solutions with viscosity ranging from 0.9 to 6.9 cP. The translational and rotational diffusion coefficients ranged from $1.5{\times}10^{-11}$ to $2.6{\times}10^{-12}m^2s^{-1}$ and from $2.9{\times}10^5$ to $5.6{\times}10^4s^{-1}$, respectively.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.

Construction of Two-Photon Microscope by using Mode-Locked $Yb^{3+}$ doped Fiber Laser (모드잠김 이터븀 광섬유 레이저를 이용한 이광자 현미경 구현)

  • Kim, Dong-Uk;Song, Ho-Seong;Song, U-Seop;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.235-236
    • /
    • 2009
  • 파장이 길고 에너지가 낮은 근적외선 영역 광자 두 개를 동시에 여기했다가 형광으로 방출하는 비선형 현상을 이용한 이광자 현미경은 살아있는 세포를 넘어 생체조직 깊은 곳에서 일어나는 생물학적 변화 관찰 및 3차원 이미지 해석이 가능한 매우 효과적인 장비이다. 그러나 상용화된 이광자 현미경은 매우 고가이고 응용의 다양성을 위한 구조적 변형이 매우 힘들다. 본 논문에서는 모드잠김 이터븀 광섬유 레이저를 이용하여 비용 효율이 높고 다루기 쉬운 이광자 현미경을 구현 하고자 한다.

  • PDF