• 제목/요약/키워드: Two-phase plume

검색결과 22건 처리시간 0.027초

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권12호
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

건식 열교환기를 이용한 백연방지 냉각탑 성능의 수치해석적 연구 (A Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger)

  • 김병조;최영기
    • 설비공학논문집
    • /
    • 제15권12호
    • /
    • pp.1018-1027
    • /
    • 2003
  • This study treats the analysis of the performance and the design of plume abatement wet/dry cooling tower with dry type heat exchanger using a numerical method. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parameter change simulations of the outer wall shape, the relative flowrate of air, and attachment of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of the cooling capacity and the additional cost are reduced and the plume is abated.

Numerical Study on the Performance Analysis of Plume Abatement Cooling Tower with Dry Type Heat Exchanger

  • Kim, Byung-Jo;Choi, Young-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권2호
    • /
    • pp.61-70
    • /
    • 2005
  • This study treats the numerical analysis of performance and design for plume abatement wet/dry cooling tower with a dry type heat exchanger. A two-dimensional analysis is performed using the finite volume method for mechanical draft counterflow and crossflow tower. For a coupling problem between water and air system, a turbulent two phase flow is considered. The Effectiveness-NTU method is used for modeling of the dry type heat exchanger. The parametric simulations such as the relative flowrate of air and attachment length of an air mixer are performed to examine the effect on plume abatement. It is found that if the relative air flowrate ratio and the adequate air mixer type are chosen well in addition to the ratio of water to air flowrate, the loss of cooling capacity and the additional cost are reduced and the plume is abated.

입자 특성에 따른 고체모터 플룸 이상유동 해석 (Two phase analysis of solid rocket motor plume as particle characteristics)

  • 김성룡;김인선
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.17-27
    • /
    • 2010
  • 알루미나 입자가 포함된 KSLV-I KM 고공 플룸 유동을 연소실에서 노즐 출구의 고공 팽창과정을 해석하였다. 알루미나 입자 및 플룸 가스의 물성치 및 분포를 달리하여 해석한 결과 연소가스 비열비를 1.2로 알루미나 입자의 직경 분포를 7가지로 가정하면 노즐 내부 유동 특성이 평형유동 해석 결과와 비교적 일치하였다. 입자의 팽창각은 가스유동보다 작으며 입자 직경이 클수록 팽창각은 더 작았다. 알루미나 입자의 광학 열물성을 변화시키며 KM TVC 분배기 위치의 복사열을 계산한 결과 알루미나 입자의 방사율이 0.1일 때 비행시험 결과와 비슷한 수준을 예측하였다.

중앙 분사 방식 냉각수 투입에 의한 로켓 연소 후류 냉각에 관한 연구 (A Study for Rocket Exhaust Flow Cooling due to the Central Spray Type Water Injection)

  • 강선일;남중원;허환일
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.163-172
    • /
    • 2013
  • 본 논문에서는 전산유동해석 기법을 활용하여 액체 로켓 연소 후류에 냉각수가 분사됨에 따라 발생하는 냉각 효과를 냉각수 분사량, 분사 위치, 분사 방식의 변화에 따른 영향을 고찰하였다. 연소 후류의 모사를 위해서는 동결 유동해석 기법에 기반한 단일화학종 비반응 해석 모델을 이용하였고, 연소 후류에 분사된 냉각수의 모사를 위해서는 Euler-Lagrangian 해석법에 따르는 이산 상 모델(Discrete Particle Model)을 사용하였다. 해석 결과 연소 후류의 약 2배 정도 냉각수가 투입되었을 때 연소 후류 중심부에서는 연소 후류의 온도가 상대적으로 감소하는 것을 확인할 수 있었다.

화염유도로 예비 해석을 위한 로켓노즐 플룸의 CFD 해석 검증 (CFD Investigation of Rocket Nozzle Plume for Flame Deflector Preliminary Analysis)

  • 전두성;김재우;김종록;김우겸;김승철;문희장
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.313-316
    • /
    • 2011
  • 초음속 유동과 2상 유동이 공존하는 화염유도로 내 유동해석을 위한 사전 해석검증의 일환으로, 초음속 단상 노즐 플룸의 2차원 축대칭 해석과 물 분사가 포함된 3차원 2상 아음속 유동을 해석하였다. 단상초음속 노즐 플룸의 경우 충격파 셀 구조를 통해 물리적으로 위배되는 현상은 발견되지 않았다. 물분사가 포함된 3차원 2상 아음속 유동의 경우, 액적의 거동과 기화 과정을 정성적으로 볼 수 있었으며 물 분사시 고온공기의 냉각 모사가 가능함을 확인할 수 있었다. 이들 기초 검증 결과들은 추후 초음속 2상 물분사 플룸 유동에 적용되어 3차원 화염유도로 해석에 응용될 예정이다.

  • PDF

잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성 (Two-phase flow and heat transfer characteristics in a submerged gas injection system)

  • 최청렬;김창녕
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성 (Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System)

  • 최청렬;김창녕
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

기체가 주입된 원통형 용기내에서 기포유동에 관한 연구 (A Study on Bubbles Flow in the Gas-injected Cylindrical Bath)

  • 서동표;박근욱;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF