• 제목/요약/키워드: Two-phase orthogonal inverter

검색결과 5건 처리시간 0.025초

A Fault Tolerant Structure and Control Strategy for Electromagnetic Stirring Supplies

  • Li, Yan;Luo, An;Xiang, Xinxing;Chen, Yandong;He, Zhixing;Zhou, Fayun;Chen, Zhiyong
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1256-1267
    • /
    • 2017
  • A fault tolerant structure and its corresponding control strategy for electromagnetic stirring power supplies are proposed in this paper. The topology structure of the electromagnetic stirring power supply contains two-stages. The fore-stage is the PWM rectifier. The back-stage is the fault tolerant inverter, which is a two-phase three-bridge orthogonal inverter circuit while operating normally. When the power switch devices in the inverter are faulty, the structure of the inverter is reconfigured. The two-phase half bridge inverter circuit is constructed with the remaining power switch devices and DC-link capacitors to keep the system operating after cutting the faulty power switch devices from the system. The corresponding control strategy is proposed to let the system work under both normal and fault conditions. The reliability of the system is improved and the requirement of the electromagnetic stirring process is met. Finally, simulation and experimental results verify the feasibility of the proposed fault tolerant structure and corresponding control strategy.

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Bus Clamping PWM Based Hysteresis Current Controlled VSI Fed Induction Motor Drive with Nearly Constant Switching Frequency

  • Peter, Joseph;Mohammed Shafi, KP;Ramchand, Rijil
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1523-1534
    • /
    • 2017
  • A Current Error Space Phasor (CESP) based hysteresis controller with online computation of the boundary for two-level inverter fed Induction Motor (IM) drives is presented in this paper. The stator voltages estimated along the ${\alpha}$-and ${\beta}$-axes and the orthogonal current error components of the motor are used in the online computation of the hysteresis boundary. All of the inherent benefits of space phasor based hysteresis controllers such as its quick dynamic response and nearby voltage vector switching are present in the proposed scheme with the added benefit of suppressing switching frequency variations. The similarity in the frequency spectrum of the phase voltage obtained at the output of the inverter using the proposed scheme and Bus Clamping Pulse Width Modulation (BCPWM) based drive is justified with the help of extensive MATLAB SIMULINK simulations. The controller is experimentally verified with a three phase, 2.2 kW IM drive for steady state and transient conditions and the obtained results match the simulation results.

A Novel Parameter-independent Fictive-axis Approach for the Voltage Oriented Control of Single-phase Inverters

  • Ramirez, Fernando Arturo;Arjona, Marco A.;Hernandez, Concepcion
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.533-541
    • /
    • 2017
  • This paper presents a novel Parameter-Independent Fictive-Axis (PIFA) approach for the Voltage-Oriented Control (VOC) algorithm used in grid-tied single-phase inverters. VOC is based on the transformation of the single-phase grid current into the synchronous reference frame. As a result, an orthogonal current signal is needed. Traditionally, this signal has been obtained from fixed time delays, digital filters or a Hilbert transformation. Nevertheless, these solutions present stability and transient drawbacks. Recently, the Fictive Axis Emulation (FAE) VOC has emerged as an alternative for the generation of the quadrature current signal. FAE requires detailed information of the grid current filter along with its transfer function for signal creation. When the transfer function is not accurate, the direct and quadrature current components present steady-state oscillations as the fictive two-phase system becomes unbalanced. Moreover, the digital implementation of the transfer function imposes an additional computing burden on the VOC. The PIFA VOC presented in this paper, takes advantage of the reference current to create the required orthogonal current, which effectively eliminates the need for the filter transfer function. Moreover, the fictive signal amplitude and phase do not change with a frequency drift, which results in an increased reliability. This yields a fast, linear and stable system that can be installed without fine tuning. To demonstrate the good performance of the PIFA VOC, simulation and experimental results are presented.

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.