• Title/Summary/Keyword: Two-phase nozzle

Search Result 131, Processing Time 0.025 seconds

Bubble and Liquid Velocities for a Bubbly Flow in an Area-Varying Horizontal Channel (유로단면이 변하는 수평관 내 기포류에서의 기포 및 액체 속도)

  • Tram, Tran Thanh;Kim, Byoung Jae;Park, Hyun Sik
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.20-26
    • /
    • 2017
  • The two-fluid equations are widely used to simulate two-phase flows in a nuclear reactor. For the two-fluid momentum equation, the wall and interfacial drag terms play an important role in predicting a two-phase flow behavior. Since the bubble density is much smaller than the water density, the bubble accelerates faster than the liquid in a nozzle. As a result, the bubble phase becomes faster than the liquid phase in the nozzle. In contrast, the opposite phenomena occur in the diffuser. The purpose of our study is to experimentally show these behaviors in an area-varying channel such as nozzle and diffuser. Experiments were made of turbulent bubbly flows in an area-varying horizontal channel. The velocities of the bubble and liquid phases were measured by the PIV technique. It was shown that the two-phase velocities were no longer close to each other in the area-varying regions. The bubble was faster than the liquid in the nozzle; in contrast, the bubble was slower than the liquid in the diffuser. Code simulations were also performed using the MARS code. By replacing the original wall drag model in the MARS code with Kim (1)'s wall drag partition model, we obtained the simulation results being consistent with experimental observations.

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF

Prediction of Erosion Rate in Passages of a Turbine Cascade with Two-Phase flow (터빈익렬 유로에서 2상 유동에 따른 삭마량 예측)

  • Yu, Man Sun;Kim, Wan Sik;Cho, Hyung Hee
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.301-308
    • /
    • 1999
  • The present study investigates numerically particle laden flow through compressor cascades and a rocket nozzle. Engines are affected by various particles which are suspending in the atmosphere. Especially in the case of aircraft aviating in volcanic, industrial and desert region including many particles, each components of engine system are damaged severely. That damage modes are erosion of compressor blading and rotor path components, partial or total blockage of cooling passage and engine control system degradation. Numerical prediction and experimental data, erosion rates are predicted for two materials - ceramic, soft metal - on compressor blade surface. Aluminum oxide ($Al_2O_3$) Particles included in solid rocket propelant make ablative the rocket motor nozzle and imped the expansion processes of propulsion. By the definition of particle deposition efficiency, characteristics of particles impaction are considered quantitatively Stoke number is defined over the various particle sizes and particle trajectories are treated by Lagrangian approach. Particle stability is considered by definition of Weber number in rocket nozzle and particle breakup and evaporation is simulated in a rocket nozzle.

  • PDF

A Study on Bubbles Flow in the Gas-injected Cylindrical Bath (기체가 주입된 원통형 용기내에서 기포유동에 관한 연구)

  • Seo Dong-Pyo;Park Keun-Uk;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

An Analysis of Flashing Jet Behavior of Pressurized Water (물제트의 노즐 입구온도변화에 따른 증발특성 해석)

  • KIM, BOOSANG;KIM, HAKDEOK;LIM, HEECHANG;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

An Analytical Study for Critical Mass Flowrate of Compressed Water (압축수의 임계유량에 관한 해석적 연구)

  • 김희동;김재형;한민교;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2003
  • As a compressed water is rapidly expanded through a nozzle, two-phase flow of vapor and liquid is formed in the nozzle due to the flash evaporation. In the present study, critical flow of two-phase fluids is analysized using an Isentropic-Homogeneous-Equilibrium model and a Leung model. Calculation results show that the choke of the two-phase flow can be two different types of continuous and discontinuous chokings. For the stagnation pressure below 10 Mpa it is found that the continuous choking, which is similar to the choking phenomenon of single-phase gas flow, is possible only when the degree of subcooling is less than 10K.

Preliminary Thermal-Hydraulic Analysis of the CANDU Reactor Moderator Tank using the CUPID Code (CUPID 코드를 이용한 CANDU 원자로 칼란드리아 탱크 내부유동 열수력 예비 해석)

  • Choi, Su Ryong;Lee, Jae Ryong;Kim, Hyoung Tae;Yoon, Han Young;Jeong, Jae Jun
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.95-105
    • /
    • 2014
  • The CUPID code has been developed for a transient, three-dimensional, two-phase flow analysis at a component scale. It has been validated against a wide range of two-phase flow experiments. Especially, to assess its applicability to single- and two-phase flow analyses in the Calandria vessel of a CANDU nuclear reactor, it was validated using the experimental data of the 1/4-scaled facility of a Calandria vessel at the STERN laboratory. In this study, a preliminary thermal-hydraulic analysis of the CANDU reactor moderator tank using the CUPID code is carried out, which is based on the results of the previous studies. The complicated internal structure of the Calandria vessel and the inlet nozzle was modeled in a simplified manner by using a porous media approach. One of the most important factors in the analysis was found to be the modeling of the tank inlet nozzle. A calculation with a simple inlet nozzle modeling resulted in thermal stratification by buoyance, leading to a boiling from the top of the Calandria tank. This is not realistic at all and may occur due to the lack of inlet flow momentum. To improve this, a new nozzle modeling was used, which can preserve both mass flow and momentum flow at the inlet nozzle. This resulted in a realistic temperature distribution in the tank. In conclusion, it was shown that the CUPID code is applicable to thermal-hydraulic analysis of the CANDU reactor moderator tank using the cost-effective porous media approach and that the inlet nozzle modeling is very important for the flow analysis in the tank.

Drop formation at submerged nozzles: Comparison of aqueous dispersed and organic dispersed cases for TBP-dodecane and nitric acid system

  • Roy, Amitava;Darekar, Mayur;Singh, K.K.;Shenoy, K.T.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.761-768
    • /
    • 2019
  • Understanding the phenomena of formation of single drops is necessary to understand the hydrodynamics in solvent extraction equipment which are used for separation of nuclear materials. In this work, the phenomena of aqueous phase and organic phase drop formation at submerged nozzles are compared by conducting experiments with 30%TBP (v/v) in dodecane as the organic phase and nitric acid as the aqueous phase. Two different nozzles and three different nitric acid concentrations are used. For each nozzle and nitric acid concentration, velocity of the dispersed phase is varied. Drops of aqueous phase formed at downward oriented nozzles submerged in organic phase are observed to be smaller than the drops of organic phase formed at upward oriented nozzles submerged in aqueous phase. Correlations to estimate drop diameter are proposed.

Hydrodynamic Characteristics of the Rectangular Type Circulating Fluidized Bed (4각 순환유동층의 수력학적 특성)

  • Hyun, Sang Yeol;Rhee, Kwan Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.232-236
    • /
    • 1997
  • A rectangular type circulating fluidized bed (CFB) with an internal nozzle and two partition walls was proposed. In this modified CFB, an internal nozzle and two slanted partition walls were additionally set in the riser. This cold mode apparatus was made of acrylic resin; the riser was 1500mm high and $1000{\times}1000mm^2$ in the cross sectional area, the internal nozzle was 200mm high and 10mm in the inner diameter, and the partition wall was 7mm thick. Glass beads of $91{\mu}m$ in the mean diameter were employed as bed materials. In the cold mode by using the proposed CFB with an internal nozzle, it was possible to change the particle hold up by changing the gas flow ratio of the nozzle to the total(Qn/Qt). It was found that the inflection point which devided the bed structure between the dense and the dilute phase in the riser varied with Qn/Qt.

  • PDF

A Study on Design of Nozzle Tip for Airless Spray Coating (에어리스 스프레이 도장용 노즐 팁 설계에 관한 연구)

  • Kim, Dong-Keon;Kim, Soon-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-188
    • /
    • 2012
  • This study was carried out to design the spray nozzle tip for airless spray coating. Airless spray coating is the process of coating an object with a liquid spray of paint or other fluid. The nozzle tip controls the fluid flow rate and creates back pressure in the system. The nozzle tip also defines the spray pattern by the size and shape of the orifice. The spray pattern of nozzle tip was investigated numerically using ANSYS CFX ver. 14.0. It was observed that performance result of designed nozzle tip was correspond well, compared with that of GARCO nozzle tip.