• 제목/요약/키워드: Two-phase flow pattern

검색결과 142건 처리시간 0.027초

사각 마이크로채널 내의 2 상유동 압력강하와 유동양식에 대한 젖음성의 영향에 대한 연구 (Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel)

  • 최치웅;유동인;김무환
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.939-946
    • /
    • 2009
  • Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethyl-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of twophase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Reduction of the Refrigerant-Induced Noise from the Transition of Flow Pattern by Decreasing Tube Diameter

  • Takushima, Akira;Han, Hyung-Suk;Jung, Wei-Bong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.37-44
    • /
    • 2009
  • It is well known that a refrigerant-induced noise is caused by two-phase flow in the indoor unit of a heat pump air-conditioner. Especially when the flow pattern in a pipe is intermittent flow, the irregular noise occurs frequently. But it is very difficult to avoid this kind of the noise for the application of air-conditioner. Therefore, in this research, the flow patterns at two-phase flow state in a pipe of the indoor unit for the air-conditioner are researched using cycle simulator at typical cycle conditions. In order to find the relationship between refrigerant-induced noise and flow pattern, the noise patterns are investigated with respect to the estimated flow pattern from the various flow pattern maps. Base on the estimations of the flow patterns by those maps, the refrigerant-induced noise is evaluated as decreasing tube diameter, which can transit the flow pattern from slug to annular flow.

냉장고 증발기 배관의 2상유동양식 예측 및 소음 평가 (Prediction of Two-phase Flow Patterns and Noise Evaluation for Evaporator Pipe in a Refrigerator)

  • 허소정;김민성;한형석;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.916-923
    • /
    • 2011
  • The refrigerant after the expansion valve interchanges the heat at the evaporator. At this moment, the state of gas and liquid becomes two-phase flow and causes irregular noise. In order to avoid the noise, the two-phase flow pattern should be predicted. In this paper, the procedure to predict the two-phase flow patterns such as churn flow and annular flow was suggested using the CFD software. The experiments using refrigerant-supplying equipment was carried out and the noise levels according to the flow pattern were measured. The flow patterns predicted by this procedure showed good agreement with those by experiments. The churn flow is noisier than annular flow pattern.

경사각 이상유동양식 천이에 관한 실험적 연구 (Experimental study on flow pattern transitions for inclined two-phase flow)

  • 곽남이;김만웅;이재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3021-3026
    • /
    • 2007
  • In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  • PDF

원관내 수직상향 2상유동에서 고분자물질이 유동양식에 미치는 영향 (The Effect of Flow Patterns with Polymer Additivies From Two Phase Flow at Vertical up Ward in Circular Tube)

  • 김재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.505-514
    • /
    • 1998
  • Flow pattern of air-water two phase flow depends on the conditions of pressure void fraction and channel geometry. We classify the flow pattern by measuring the output signal of the conductivity probe. under the classified flow pattern we mount a visualization equipment on the test section and take pictures. We vary the concentration of pure solvent and polymer to measure local void fraction. We know that the maximum point position of local void fraction distribution move from the center of the pipe to the wall of the pipe as JSL increase when JSA is constant in two phase flow. But we find that the maximum point position of local void friction move from the wal of the pipe to the center of the pipe when polymer concentration increase.

  • PDF

R134a 및 Rl23과 비공비 혼합냉매 R134a/R123의 수평관내 이상유동양식에 관한 연구 (A Study on Two-Phase Flow Pattern of Pure Refrigerants R134a and Rl23 and Zeotropic Mixture R134a/R123 in Horizontal Tubular)

  • 임태우;김준효
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1033-1041
    • /
    • 2003
  • Two-phase flow pattern data during horizontal in-tube flow boiling are presented for pure and mixed refrigerants of R134a and Rl23, The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section, which is made of a stainless steel tube, 2m long with 10mm I.D., 1.5mm wall thickness. The obtained results are compared with the available various correlations for flow pattern. The flow pattern map of Hashizume was in good agreement with the present data except the region of low mass velocity. Weisman flow pattern map was also known to satisfactorily predict data for refrigerants in the region of annular flow. In this study, the flow pattern are simply classified into two groups; stratified(including intermittent, stratified and stratified-wavy) flow and annular flow. The transition quality from stratified to annular flow was obtained by modifying the liquid Froude number.

Flow Pattern and Pressure Drop of Pure Refrigerants and Their Mixture in Horizontal Tube

  • Lim, Tae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2289-2295
    • /
    • 2005
  • Two-Phase flow pattern and pressure drop data were obtained for pure refrigerants R134a and R123 and their mixtures as test fluids in a horizontal tube. The flow pattern is observed through tubular sight glasses located at inlet and outlet of the test section. The flow map of Baker developed for air-water two-phase flow at atmospheric pressure failed to predict the observed flow patterns at the higher value of the mass velocity used in the present study. The map of Kattan et al. predicted the data well over the entire region of mass velocity selected in the present study. The measured pressure drop increased with an increase in vapor quality and mass velocity. A new two-phase multiplier was developed from a dimensional analysis of the frictional pressure drop data measured in the present experiment. This new multiplier was found successfully to correlate the frictional pressure drop.

비비등 선회유동에서의 2상 대류열전달 증가 (Two phase convective heat transfer augmentation in swirl flow with non-boiling)

  • 차경옥;김재근
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2586-2594
    • /
    • 1995
  • Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased.

Effect of the Gravity Forces on Flow Pattern and Frictional Pressure Drop in Two-Phase, Two-Component Flow

  • Choi, B.-H;Han, W.-H
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.338-346
    • /
    • 2004
  • Experimental data on the effect of the variable gravity magnitude, namely microgravity, normal gravity and hyper-gravity, on flow pattern and frictional pressure drop were obtained during co-current air-water flow in a horizontal tube, The flow patterns were found to depend strongly on the gravity magnitude and certain flow pattern were found to depend on the gas superficial velocity. The effect of the gravity magnitude had an effect on the frictional pressure drop only at low flow rates. The present data are used to evaluate some of existing flow pattern transition and pressure drop models and correlations.