• 제목/요약/키워드: Two-phase drive

검색결과 171건 처리시간 0.028초

6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘 (Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM)

  • 김성훈;장원진;조관열;김학원
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

Digital Implementation of PWM Techniques for Two-phase Eight-switch Inverter fed Brushless DC Motor Drives

  • Lin, Hai;You, Yong-Min;Cheon, Sung-Rock;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.295-303
    • /
    • 2013
  • This paper reports an investigation of pulse width modulation (PWM) techniques for two-phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-degree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

2상 4/3 SRM의 구조적 특성에 관한 연구 (A Study on the Structure characteristics of two phase 4/3 SRM)

  • 배강열;오석규
    • 조명전기설비학회논문지
    • /
    • 제28권5호
    • /
    • pp.115-121
    • /
    • 2014
  • The intrinsic simplicity, ruggedness, and simple power electronic drive requirement of a Switched Reluctance Motor(SRM) make it possible to use in many commercial adjustable speed application. The simple magnetic circuit results in a high efficiency drive and low temperature rise, and the drive system provides a good drive characteristics. This paper is provides two phase 4/3 SRM that is similar to two phase 6/3 SRM as aspect to magnetic structure. Although 6/3 SRM does not experience any flux reversal as the flux is in the same direction whether phase A or B is excited, but two phase 4/3 SRM experiences a flux reversal in small part of stator yoke. The flux reversal in two phase 4/3 SRM could be relieved by an adjustment of stator yoke structure. The magnetic analysis and design considerations of the two phase 4/3 SRM have been obtained by the finite element method analysis (FEM).

Thermal Analysis of Interior Permanent-Magnet Synchronous Motor by Electromagnetic Field-Thermal Linked Analysis

  • Lee, Sang-Taek;Kim, Hee-Jun;Cho, Ju-Hee;Joo, Dae-Suk;Kim, Dae-Kyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.905-910
    • /
    • 2012
  • This paper reports an investigation of pulse width modulation (PWM) techniques for twophase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electricaldegree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

A Performance Comparison of Excitation Strategies For a Low Noise SRM Drive

  • Lee Dong-Hee;Kim Tae-Hyoung;Ahn Jin-Woo
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.218-223
    • /
    • 2005
  • A simple construction, low cost, and a fault tolerant power electronic drive have made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive exhibits higher levels of vibration and acoustic noise than most competing drives. The main source of vibration in the switched reluctance drive is generated by the rapid change of radial magnetic force when the phase current is extinguished during commutation. In this paper, some excitation methods are proposed to reduce the vibration and acoustic noise of the switched reluctance drive. The excitation strategies considered in this research are 1-phase, 2-phase and hybrid excitation methods. The 1-phase method is the conventional approach, while in the 2-phase method, the two phases are excited simultaneously. The hybrid excitation has 2-phase excitation using a long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are compared and tested. The suggested 2-phase and hybrid strategies reduce acoustic noise because the schemes reduce the abrupt change in excitation level by using distributed and balanced excitation.

MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

  • Khan, M. Rizwan;Iqbal, Atif
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.224-234
    • /
    • 2008
  • Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

New PWM Technique for Two-Phase Brushless DC Motor Drives

  • Lin, Hai;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1107-1115
    • /
    • 2013
  • A new PWM technique for a two-phase BLDC motor fed by a two-phase eight-switch inverter is proposed in this paper. It is well known that a two-phase eight-switch inverter can significantly improve power output compared with a two-phase six-switch inverter in a two-phase motor drive. To drive the two-phase BLDC motor simply and effectively, two normal PWM strategies are investigated to manage speed regulation. However, under the conditions of low speed and light load, especially during the braking process, the current in a short time of one period is near zero, which is a discontinuous waveform every half period. To solve it, a novel PWM technique is investigated to improve the operational performance of normal technique. Using the new PWM scheme, the current continues every half period and the braking performance is improved. The effectiveness of the proposed PWM method is verified through the experiments.

Programmable Ministep Drive

  • Thedmolee, Sunhapitch;Pongswatd, Sawai;Kummool, Sart;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2274-2277
    • /
    • 2003
  • A cylindrical permanent magnet inside the four-phase permanent magnet (PM) stepping motor is employed as the rotor. The stator has four teeth around, which its coils are wound. The mode of excitation can be classified into 3 modes: single-phase excitation, two-phase excitation and ministep excitation. The ministep drive is a method to subdivide one step into several small steps by means of electronics. The paper presents the programmable ministep technique drive. This technique decodes the results obtained from the counter to locate the data in Read Only Memory (ROM). The Sinusoidal Pulse Width Modulation (SPWM) is transformed to binary file and saved to the ROM. The experiment is performed with the four-phase PM stepping motor and drives from a two-phase programmable sinusoidal ministep signal, instead of square wave. The results show that the performances of the proposed programmable ministep technique drive have high efficiency, smooth step motion, and high speed response. Moreover, the resolution of sinusoidal ministep signal can be controlled by the input frequency (f command).

  • PDF

Implementation of Space Vector Two-Arm Modulation for Independent Motor Control Drive Fed by a Five-Leg Inverter

  • Talib, Md Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Abu Hasim, Ahmad Shukri
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.115-124
    • /
    • 2014
  • This paper presents the implementation of two-arm modulation (TAM) technique for the independent control of a two-induction motor drive fed by a five-leg inverter (FLI). A carrier-based space vector pulse width modulation technique for TAM is proposed to generate switching signals for FLI. Two independent three-phase space vector modulators are utilized to control two motors. The motor drive system applies two separate indirect field-oriented control methods. The stationary voltage outputs from the vector control are synthesized in the three-phase space vector modulator to generate switching signals for FLI. The performance of the independent control of the motors and the voltage utilization factor are likewise analyzed. Simulation and experimental results verify the effectiveness of the proposed method for the independent control of the two-motor drive system. The proposed technique is successfully validated by dSPACE DS1103 experimental work.

2상 유도전동기 구동 2상 인버터의 벡터 제어 (Vector Control for Two-Phase Inverter-Fed Two-Phase Induction Motors)

  • 장도현;조영훈
    • 전력전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.310-317
    • /
    • 2007
  • 본 논문에서는 평형 2상유도전동기에 대한 시스템 방정식을 유도하고 해석하였으며, 동기좌표계에서 평형 2상유도전동기의 속도제어 특성을 분석하였다. 3상 교류 전동기의 속도제어에 범용적으로 적용하는 벡터제어이론을 "2상 인버터 구동 2상 유도전동기 시스템"에 수정하여 적용하였으며, 이 때 2상 유도전동기 시스템은 수정된 간접 벡터제어이론에 의해 속도 제어하였다. 2상 유도기의 벡터제어의 특성과 근사함을 보여주기 위해 제안 시스템을 시뮬레이션하였다. 최종적으로 실험을 통해서 제안 시스템이 벡터제어에 확실히 적응하는 것을 확인하였다.