• 제목/요약/키워드: Two-phase Turbulent Flow

검색결과 139건 처리시간 0.027초

유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구 (Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification)

  • 조한창;신현동
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

DNS of Interaction Phenomena in Particle-Laden Turbulence

  • Kajishima T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.9-11
    • /
    • 2003
  • A homogeneous flow field including more than 2000 spherical particles was directly simulated. Particles are settling by gravity with the Reynolds number ranging from 50 to 300, based on diameter and slip velocity. Particular attention was focused on the distribution of particles. The Reynolds-number dependence, influences of particle rotation and loading ratio, and the dynamics of particle clusters are discussed. In the higher Reynolds number case, the wake attraction causes particle clusters and the average drag coefficient decreases significantly. Non-rotating particles maintain cluster structure and rotating ones moves randomly in the horizontal direction. It is because of the difference in the direction of the lift force.

  • PDF

Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정 (Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique)

  • 이상준;백부근;윤정환
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

과냉수에서의 증기응축제트에 대한 해석적 연구 (An Analytical Study on the Condensation of Submerged Vapor Jets in Subcooled Liquids)

  • 김기웅;이계복;김환열
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.333-340
    • /
    • 1999
  • 과냉수에서의 난류 증기응축 제트에 대한 수치해석 연구가 수행되었다. 증기와 과냉수 사이에 국부 균질유동을 가정하고 난류 특성은 난류 확산화염에서 사용되는 $textsc{k}$-$\varepsilon$-g 모델을 사용하여 증기응축 유동 현상에 대한 물리적 모델을 제안하였다. 즉, 난류는 난류 운동 에너지와 운동 에너지 소멸률로 모사되고 증기와 과냉수의 혼합률비에 대한 평균값과 변동량에 대한 미분 방정식을 추가하여 직접 풀고 혼합률비에 확률분포 함수를 적용하여 열역학 변수의 평균값을 구한다. 증기 질량 유속, 과냉수 온도와 노즐 직경을 변화시키며 증기응축제트의 특성을 해석하였다. 본 해석에 사용된 모델을 평가하기 위해 기존의 실험 데이터를 사용해서 수치해석 결과와 실험치를 비교하여 만족할 만한 결과를 얻었다.

  • PDF

고체 분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용 (II) - 열전달 기구 - (Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particl Flow in a Pipe(II) - Mechanism of Heat Transfer-)

  • 한기수;정명균;성형진
    • 대한기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.214-224
    • /
    • 1990
  • 본 연구에서는 현 저자의 이전의 연구를 확장하여 균일한 열유속을 갖는 2상 기체-고체입자 위 방정식에서 축 방향의 열전달은 반경 방향의 열전달보다 작아 무시 하였으며, 복사 열전달은 기체와 입자 사이의 온도 차이가 적어 무시하였다. 방정식 중 $F_{px}$$F_{pr}$ 은 2상 사이의 상호작용에 의한 단위부피당 축방향과 반경방향 의 저항력이며, 수직관의 열전달 특성을 부하도와 상대 입자 크기 $d_{p}$/D를 변화시 켜 가면서 조사하는 것이다.다.

다양한 전열관 내부 홈 변화에 의한 열전달 성능에 관한 연구 (A Study on the Heat Transfer Performance Using Various Grooved Heat Transfer Tubes)

  • 한규일;정원규;예석수;박성현
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.26-32
    • /
    • 2000
  • Single-phase heat transfer performance and pressure drop for internally grooved tubes with angles were studied. Experiments were carried out in a counter flow heat exchanger with water as a working fluid. Two commercially available internally grooved tubes and smooth tube were tested. The internal diameter of the smooth tube was 16.5mm and the internal diameters of grooved tubes were 15.4mm, 14.9mm, 15.0mm, 16.7mm, respectively. Grooved angles in the tubes were $37^{\circ},\;43^{\circ},\;45^{\circ},\;50^{\circ}$, respectively. An experimental device to measure the friction factor and heat transfer coefficient was constructed. The experimental results were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux. As the increase of flow rate, Reynolds number, numbers of groove and grooved angle led to the increase of pressure drop. Also this paper showed that heat transfer rate increased with increasing numbers of groove and grooved angle. An empirical relation taken from this study represented most of the data within ${\pm}25%$.

  • PDF

캐비티가 존재한 사각 단면 분류층 연소실내에서 2상류의 유체역학적 거동에 관한 연구 (A Study on The Hydrodynamic Behaviours of Two Phase Flow in Rectangular Entrained Flow Combustor with Cavity)

  • 박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권1호
    • /
    • pp.43-48
    • /
    • 1997
  • 본 연구에서는 미분탄과 공기를 혼합하여 노즐을 통하여 바닥면에 캐비티가 존재한 사각단면 분류층 연소실로 분사 시킬 때에 분사된 혼합유동의 평균속도,농도 및 난류특성치들의 유체역학적 거동을 3차원 측정이 가능한 PDA를 이용하여 실험적으로 규명하였다. 바닥면의 재부착점은 X/D=15인 부근에서 나타나며, 재부착점 이후에서 부터 각 단면의 상사성이 이루어지는 것으로 나타났다. 사각 연소실 바닥면 관통의 영향을 받아 난류강도와 난류전단용력의 최대값은 중심축보다 높은 Y/D=6인 점에서 최대가 되며, 미분탄의 농도는 Y/D=6~8인 점에서 최대값이 나타났다.

  • PDF

이중주파수 가진이 후향계단 유동에 미치는 영향 (Effect of Two-Frequency Forcing on Flow Behind a Backward-Facing Step)

  • 유정열;진송완;김성욱;최해천;김사량
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.423-431
    • /
    • 2002
  • An experimental study is conducted to investigate the effect of two-frequency forcing on turbulent flow behind a backward-facing step at the Reynolds number of 27000 based on the step height. The forcing is provided from a thin slit located at the edge of the backward-facing step to increase mixing behind the backward-facing step and consequently to reduce the reattachment length. With single frequency forcing, the minimum reattachment length is obtained at the non-dimensional forcing frequency (F) of St$\_$h/ = 0.29. With two-frequency forcing, a subharmonic frequency (F/2) or biharmonic frequency (2F) is combined with the fundamental frequency (F), i.e. (F, F/2) or (F, 2F) forcing is applied. In the case of (F, F/2) forcing, the reattachment length is not much sensitive to the phase difference between F and F/2. However, the reattachment length significantly depends on the phase difference between F and 2F in the case of (F, 2F) forcing. At a certain range of the phase difference, the reattachment length becomes smaller than that of the single frequency forcing.

Numerical study of wake structure behind a square cylinder at high Reynolds number

  • Lee, Sungsu
    • Wind and Structures
    • /
    • 제1권2호
    • /
    • pp.127-144
    • /
    • 1998
  • In this paper, the wake structures behind a square cylinder at the Reynolds number of 22,000 are simulated using the large eddy simulation, and the main features of the wake structure associated with unsteady vortex-shedding are investigated. The Smagorinsky model is used for parametrization of the subgrid scales. The finite element method with isoparametric linear elements is employed in the computations. Unsteady computations are performed using the explicit method with streamline upwind scheme for the advection term. The time integration incorporates a subcycling strategy. No-slip condition is enforced on the wall surface. A comparative study between two-and three-dimensional computations puts a stress on the three-dimensional effects in turbulent flow simulations. Simulated three-dimensional wake structures are compared with numerical and experimental results reported by other researchers. The results include time-averaged, phase-averaged flow fields and numerically visualized vortex-shedding pattern using streaklines. The results show that dynamics of the vortex-shedding phenomenon are numerically well reproduced using the present method of finite element implementation of large eddy simulation.

Heat Transfer Characteristics of Liquid-Solid Suspension Flow in a Horizontal Pipe

  • Ku, Jae-Hyun;Cho, Hyun-Ho;Koo, Jeong-Hwan;Yoon, Suk-Goo;Lee, Jae-Keun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1159-1167
    • /
    • 2000
  • Particles in liquid-solid suspension flow might enhance or suppress the rate of heat transfer and turbulence depending on their size and concentration. The heat transfer characteristics of liquid-solid suspension in turbulent flow are not well understood due to the complexibility of interaction between solid particles and turbulence of the carrier fluid. In this study, the heat transfer coefficients of liquid-solid mixtures are investigated using a double pipe heat exchanger with suspension flows in the inner pipe. Experiments are carried out using spherical fly ash particles with mass median diameter ranging from 4 to $78{\mu}m$. The volume concentration of solids in the slurry ranged from 0 to 50% and Reynolds number ranged from 4,000 to 11,000. The heat transfer coefficient of liquid-solid suspension to water flow is found to increase with decreasing particle diameter. The heat transfer coefficient increases with particle volume concentration exhibiting the highest heat transfer enhancement at the 3% solid volume concentration and then gradually decreases. A correlation for heat transfer to liquid-solid flows in a horizontal pipe is presented.

  • PDF