• Title/Summary/Keyword: Two-layer shallow-water

Search Result 35, Processing Time 0.026 seconds

The relevance of turbulent mixing in estuarine numerical models for two-layer shallow water flow

  • Krvavica, Nino;Kozar, Ivica;Ozanic, Nevenka
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.95-109
    • /
    • 2018
  • The relevance of turbulent mixing in estuarine numerical models for stratified two-layer shallow water flows is analysed in this paper. A one-dimensional numerical model was developed for this purpose by extending an immiscible two-layer model with an additional source term, which accounts for turbulent mixing effects, namely the entrainment of fluid from the lower to the upper layer. The entrainment rate is quantified by an empirical equation as a function of the bulk Richardson number. A finite volume method based on an approximated Roe solver was used to solve the governing coupled system of partial differential equations. A comparison of numerical results with and without entrainment is presented to illustrate the influence of entrainment on both the salt-water intrusion length and lower layer dynamics. Furthermore, one example is given to demonstrate how entrainment terms may help to stabilize the numerical scheme and prevent a possible loss of hyperbolicity. Finally, the model with entrainment is validated by comparing the numerical results to field measurements.

Collapse analysis of shallow tunnel subjected to seepage in layered soils considering joined effects of settlement and dilation

  • Yang, X.L.;Zhang, R.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.217-235
    • /
    • 2017
  • The stability prediction of shallow buried tunnels is one of the most difficult tasks in civil engineering. The aim of this work is to predict the state of collapse in shallow tunnel in layered soils by employing non-associated flow rule and nonlinear failure criterion within the framework of upper bound theorem. Particular emphasis is first given to consider the effects of dilation on the collapse mechanism of shallow tunnel. Furthermore, the seepage forces and surface settlement are considered to analyze the influence of different dilation coefficients on the collapse shape. Two different curve functions which describe two different soil layers are obtained by virtual work equations under the variational principle. The distinct characteristics of falling blocks up and down the water level are discussed in the present work. According to the numerical results, the potential collapse range decreases with the increase of the dilation coefficient. In layered soils, both of the single layer's dilation coefficient and two layers' dilation coefficients increase, the range of the potential collapse block reduces.

Water Mass Distribution and Currents in the Vicinity of the Hupo Bank in Summer 2010 (2010년 하계 후포퇴 근해의 수괴분포와 해류)

  • Lee, Jae Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.61-73
    • /
    • 2016
  • Water mass distribution and currents were investigated off the east coast of Korea near the Hupo Bank using the CTD and ADCP data from June to August 2010. The typical water masses were: (1) Tsushima Surface Water (TSW) from the East Korean Warm Current (EKWC) in the surface layer, (2) a shallow thermocline at 20-30 m depth, (3) Tsushima Middle Water (TMW) of high salinity (>34.2) below the pycnocline, (4) North Korean Cold Water (NKCW) of low salinity (<34.05) and low temperature (<4°C) in the lower layer. In June, a double eddy was observed in which a cold filament intruded cyclonically from the south around a pre-existing cold-core eddy. A burst of strong southward current was recorded in mid-August due to a warm filament from the meandering EKWC. Current in the N-S direction was predominant due to topographic effects, and the direction of the northward EKWC was frequently reversed in its direction due to the eddy-filament activity, whereas the influence of the wind was not noticeable. The vertical structure of the current was of a two-layer system, with the northward EKWC in the upper layer and weak southward flows corresponding to the North Korean Cold Current (NKCC) in the deeper layer.

Evaluation of stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (Hunt 해석해를 이용한 천부대수층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Chung, Il Moon;Kim, Nam Won;Hong, Sung Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.923-930
    • /
    • 2016
  • This study was to evaluate the stream depletion from groundwater pumping in shallow aquifer using the Hunt's analytical solution (2009) which considers a two-layer leaky aquifer-stream system. From the total 2,187 cases of simulations with combinations of various aquifer and stream properties, the streamflow depletion rates divided by the groundwater pumping rate showed the low values when the stream depletion factor (SDF) is higher than 1,000-10,000, and was more sensitive to the aquitard hydraulic conductivity than the streambed hydraulic conductivity. The comparison of the Hunt's solution (2009) with the Hunt's solution (1999) of a single layer aquifer indicated that the maximum difference between the dimensionless stream depletions calculated by using both solutions is above 0.3, and the stream depletion is significantly affected by the hydraulic properties of the $2^{nd}$ layer as the SDF of the first layer increases. The Hunt's solution (2009) was applied to the real shallow groundwater well that is located in Chunju-Si, and the results revealed that the groundwater pumping has significant effects on streamflow in a short period of time, showing that the dimensionless stream depletion exceeds 0.8 within a few days. It was also found that the shallow groundwater pumping effects on stream depletion are highly dependent on the stream-well distance for the locations with high hydraulic diffusivity of $1^{st}$ layer and low vertical leakance between $1^{st}$ and $2^{nd}$ layers.

Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir (팔당호 수질의 연직분포에 대한 밀도류 영향 평가)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.

NUMERICAL ANALYSIS OF FLOW AROUND A SUBMERGED BODY NEAR A PYCNOCLINE USING THE GHOST FLUID METHOD ON UNSTRUCTURED GRIDS (비정렬 격자에서 Ghost Fluid 법을 이용한 밀도약층 주위 수중운동체에 의한 유동 해석)

  • Shin, Sang-Mook
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.70-76
    • /
    • 2005
  • A two-layer incompressible time-accurate Euler solver is applied to analyze flow fields around a submerged body moving at a critical speed near a pycnocline. Discontinuities in the dependent variables across the material interface are captured without any dissipation or oscillation using the ghost fluid method on an unstructured grid. It is shown that the material interlace has significant effects on forces acting on a submerged body moving near a pycnocline regardless of the small difference in densities of two layers. Contrary to the shallow water waves, a submerged body can reach a critical speed at very low Froude number due to the small difference in the densities of the two layers.

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.2
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

Seasonal Variation of Phytoplankton in the East Sea Using A Surface Mixed Layer Ecosystem Model (표층혼합층 생태계모델을 이용한 동해 식물플랑크톤의 계절변화)

  • KIM Sang Woo;ISODA Yutaka;AZUMAYA Tomonori
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Seasonal variation of phytoplankton was investigated with surface mixed layer ecosystem model in the East Sea. The model consisted of four compartments (phytoplankton, zooplankton, nutrient, detritus) forced by mixed layer depths, photosynthetically available radiation and nutrient concentrations. From model results we estimated entrainment rate $2.5-4.0\;m{\cdot}day^{-1}$ to reproduce the two annual blooms, and reproduced seasonal variation of phytoplankton at southern and northern regions by the difference of surface winter mixed layer depth (MLD) using the entrainment rate value $3.0\;m{\cdot}day^{-1}$. The spring blooms in the southern and northern regions closely related to deepening of a winter surface MLD. In the southern region where MLD was shallow and phytoplankton spring bloom occurs one month in advance to the northern region where MLD was deep. The amount of light increases within the MLD during the onset of stratification and water temperature increases faster in spring in the southern region than the northern region. Decrease of phytoplankton was mainly affected by zooplankton grazing in the southern region and by nutrient exhaustion in the northern region. The fall bloom in the two regions was caused by the nutrient availability and entrainment on the phytoplankton.