• Title/Summary/Keyword: Two-fluid 모형

Search Result 78, Processing Time 0.022 seconds

Experimental Investigation of Wedge Slamming Impact (쐐기 슬래밍에 관한 실험적 연구)

  • Di, Ren;Ahn, Gang-Su;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.163-168
    • /
    • 2015
  • This paper presents the results of experimental work on the wedge slamming impact problem. An experiment was done with a wedge model. The deadrise angle of the wedge was $4^{\circ}$. The model was made in two parts: the outside part was made of a 5-mm-thick steel plate that could be assumed to be a rigid body, and the inside part was made of a thin SUS plate that could be assumed to be an elastic body. Thin SUS plate thicknesses of 2 mm and 3 mm were used to determine the effect of plate rigidity. The drop height was varied from 0.25 m to 1 m to determine the effect of a large deformation.

Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model (대형 풍력터빈 모형의 공력 성능 및 후류 유동장에 대한 비교 연구)

  • Jeong, Duwon;Won, Young Soo;Kang, Seung-Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.32-38
    • /
    • 2019
  • A comparison study between computational-fluid-dynamics simulation and wind tunnel test for a megawatt-class wind turbine is conducted. For the study, flow-field in wake, basic aerodynamic performance, and effect of the yaw error for a 1/86 scaled-down model of the NREL offshore 5 MW wind turbine are numerically calculated using commercial software "FloEFD" with $k-{\varepsilon}$ turbulence model. The computed results are compared to the wind tunnel test performed by the constant-velocity mode for the model. It is shown that discrepancy are found between the two results at lower tip-speed ratio and higher yaw angle, however, the velocity-defection distribution in the wake, the torque coefficient at moderated and high tip-speed ratios are in good agreement with the wind tunnel test.

Development and application of automation algorithm for optimal parameter combination in two-dimensional flow analysis model (2차원 흐름해석모형의 매개변수 최적조합결정 자동화 알고리즘의 개발과 적용)

  • An, Sehyuck;Shin, Eun-taek;Song, Chang Geun;Park, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1007-1014
    • /
    • 2023
  • Two-dimensional flow analysis, a fundamental component of hydrodynamics, plays a pivotal role in numerically simulating fluid behavior in rivers and waterways. This modeling approach heavily relies on parameters such as eddy viscosity and roughness coefficient to accurately represent flow characteristics. Therefore, combination of appropriate parameters is very important to accurately simulate flow characteristics. In this study, an automation algorithm was developed and applied to find the optimal combination of parameters. Previously, when applying a two-dimensional flow analysis model, former researchers usually depend on the empirical approach, which causes many difficulties in finding optimal variable values. Using the experimental data, we tracked errors according to the combination of various parameters and applied the algorithm that can determine the optimal combination of parameters with the Python language. The automation algorithm can easily determine the most accurate combination by comparing the flow velocity error values among the two-dimensional flow analysis results among the combinations of 121 (11×11) parameters. In the perspective of utilizing automation algorithm, there is an expected high utility in promptly and straightforwardly determining the optimal combination of parameters with the smallest error.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

Analysis of Two-Dimensional Sloshing Problems by a Lagrangian FEM (Lagrangian 유한요소법을 이용한 2차원 탱크내 유동해석)

  • P.M.,Lee;S.W.,Hong;S.Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.21-30
    • /
    • 1990
  • Theoretical and experimental techniques to analyze the two-dimensional liquid motion in a tank are discussed. A Lagrangian FEM with a velocity correction procedure is introduced to describe incompressible free surface fluid flow. A mesh rezoning technique is used to prevent strong distortion of finite elements in the Lagrangian description. Model test technique for sloshing tank is developed using a hydraulic type bench tester. The influence of the variation in the exciting frequency and amplitude are observed for various fill depths. The results of theoretical calculations are compared with those of experiments.

  • PDF

Mathematical Models of Substrate Utilization within Bacterial Films (미생물막(微生物膜)을 이용(利用)한 폐수처리(廢水處理)의 수학적(數學的) 모델에 관한 연구(研究))

  • Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.43-51
    • /
    • 1981
  • A model of substrate utilization witbin bacterial films has been developed and simulated for a better understanding of fixed film treatment processes. The model consists of two parts, a deep biofilm and a thin biofilm, which are classified based on substrate penetration into the biofilm. Substrate concentration and flux within a biofilm can be computed from the model. Three dimensionless parameters, ${\phi}_1$, ${\phi}_2$ and $\bar{S}_b$ were obtained during model construction, and the substrate concentration and flux can be expressed in terms of these parameters. It has been found that an. increase of ${\phi}_1$ or a decrease of ${\phi}_2$ results in an increase of treatment efficiencies. It has also been found that systems maintaining high efficiencies belong to a deep biofilm. Among the constants involved, the mass transfer coefficient is the only controllable term and it depends Largely on fluid velocity near the biofilm surface. Substrate removal efficiency may be increased with an increase of fluid velocity for a biofilm of fixed depth. However, film depth is decreased due to sloughing with increasing velocity, and the system reaches a new steady state. Because changes in film depth are not well defined quantitatively yet, the efficiency can not be clearly described at a new steady state.

  • PDF

The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space (반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구)

  • Chang, Hyuk-Sang;Choi, Byung-Il;Park, Jae-Cheul;Kim, Myung-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.877-885
    • /
    • 2005
  • The Froude scaling between the prototype and the model was tried to estimate the necessary ventilation rate for non-isothermal concentrated fume from the semi-closed inner space. Based on the non-dimensional similitude equations derived from the Zukoski plume rise analysis, the scaling experiments were done to verify the relationship of the non-dimensional energy release rate and the non-dimensional mass flow rate by using two different scaled volume models, model A ($1\;m{\times}1\;m{\times}1\;m$) and model B ($0.5\;m{\times}0.5\;m{\times}0.5\;m$). The experimental results showed that the theoretical similitude between the models is acceptable for the prediction of ventilation rate of the concentrated fume. The maximum energy release rate used for the experiments was $20\;kW/m^3$. In the experimental range, the similitude between the energy release rate and the ventilation mass flow rate was well defined and the necessary ventilation rates were 20-30% higher than the stoichiometric ventilation mass flow rate. Based on results of current study, the design of the local air ventilation system can be improved by correcting the effects of buoyancy and diffusion of the non-isothermal concentrated fume.

Analysis of Hydraulic effects on Piers and Transverse Overflow Type Structures in Urban Stream (도시하천의 교각 및 횡단 월류형 구조물에 의한 수리영향 분석)

  • Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.197-212
    • /
    • 2008
  • Recently, stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many condition limits. In this study, FLOW-3D using CFD (Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS (Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behaviors and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG (Renormalized Group) ${\kappa}-{\varepsilon}$ and LES (Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the piers and transverse overflow type structures. These results will be able to used by basis data that catch hold of effects on long-term bed elevation changes, sediment accumulations, scours and water aggravations by removal of obsolete transverse over flow type structures in urban stream.

Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir (사각형 광정위어를 통과하는 자유수면 흐름 수치모의)

  • Paik, Joongcheol;Lee, Nam Joo
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • Numerical simulations of free surface flow over a broad-crested rectangular weir are conducted by using the volume of fraction (VOF) method and three different turbulence models, the k-${\varepsilon}$, RNG k-${\omega}$ and k-${\omega}$ SST models. The governing equations are solved by a second-order accurate finite volume method and the grid sensitivity study of solutions is carried out. The numerical results are evaluated by comparing the solutions with experimental and numerical results of Kirkgoz et al. (2008) and some non-dimensionalized experimental results obtained by Moss (1972) and Zachoval et al. (2012). The results show that the present numerical model can reasonably reproduce the experimental results, while three turbulent models yield different numerical predictions of two distinct zones of flow separation, the first zone is in front of the upstream edge of the weir and the second is created immediately behind the upstream edge of the weir where the flow is separated to form the separation bubble. The standard k-${\varepsilon}$ model appears to significantly underestimate the size of both separation zones and the k-${\omega}$ SST model slightly over-estimates the first separation zone in front of the weir. The RNG k-${\varepsilon}$ model predicts both separation zones in overall good agreement with the experimental measurement, while the k-${\omega}$ SST model yields the best numerical prediction of separation bubble at the upstream edge of the weir.

A Study on a Method for Composing a Portfolio for REITs Investment Using Markowitz's Portfolio Model (마코위츠 포트폴리오 모형을 사용한 리츠 투자 포트폴리오 구성방법에 관한 연구)

  • Lee, Chi-Joo;Lee, Ghang;Won, Jong-Sung;Ham, Sung-Ili
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.2
    • /
    • pp.54-63
    • /
    • 2010
  • Domestic construction companies suffer from the difficulty in financing in the wake of economic slump at home and abroad. In the periods of this economic slump, which hit the nation REITs, the facilitator of fluid financing and the stimulating of construction economic, has increasingly been expanded since its introduction in 2001. But, REITs relatively falls behinds any other nations, in terms of its growth speed and marketing volume. The purpose of this research thesis is to suggest the method for composing a portfolio using Markowitz portfolio selection models for stimulating REITs. Main contents are as follows. First, the thesis made the comparative analysis on profit increase in REITs investment in application of models by Markowitz and REITs derivatives from 2007/07/03 to 2008/07/21 during investment analysis periods. The result showed that total profits by Markowitz model amounted to about 10 percent higher than average profits of REITs derivatives. Second, this thesis made the analysis on sensitivity of data-gathering and portfolio change periods of the existing profits, in order to measure the both periods and yield optimum profits. The six month data-collecting periods of profits accounted for some 16% higher profits than profits of REITs derivatives. In case when the two week periods of portfolio change accounted for some 11% higher profits than profits of REITs derivatives.