• 제목/요약/키워드: Two-domain boundary element method

검색결과 106건 처리시간 0.024초

Two-domain 경계 요소법을 이용한 해양 내부파의 수치적 재현 (Numerical Analysis of Internal Waves in Two-layer Fluids by a Two-domain Boundary Element Method)

  • 구원철;김미근
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.6-11
    • /
    • 2009
  • In this study, the internal waves in two-density layered fluids were analyzed using the Numerical Wave Tank (NWT) technique in the frequency domain. The NWT is based on a two-domain Boundary Element Method with the potential fluids using the whole-domain matrix scheme. From the mathematical solution of the two-domain boundary integral equation, two different wave modes could be classified: a surface wave mode and an internal wave mode, and each mode were shown to have a wave number determined by a respective dispersion relation. The magnitudes of the internal waves against surface waves were investigated for various fluid densities and water depths. The calculated results are compared with available theoretical data.

On boundary discretization and integration in frequency-domain boundary element method

  • Fu, Tia Ming;Nogami, Toyoaki
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.339-345
    • /
    • 1998
  • The computation size and accuracy in the boundary element method are mutually coupled and strongly influenced by the formulations in boundary discretization and integration. This aspect is studied numerically for two-dimensional elastodynamic problems in the frequency-domain. The localized nature of error is observed in the computed results. A boundary discretization criterion is examined. The number of integration points in the boundary integration is studied to find the optimum number for accuracy. Useful information is obtained concerning the optimization in boundary discretization and integration.

1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake

  • Zhao, Mi;Yin, Houquan;Du, Xiuli;Liu, Jingbo;Liang, Lingyu
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.173-194
    • /
    • 2015
  • Site response analysis is an important topic in earthquake engineering. A time-domain numerical method called as one-dimensional (1D) finite element artificial boundary method is proposed to simulate the homogeneous plane elastic wave propagation in a layered half space subjected to the obliquely incident plane body wave. In this method, an exact artificial boundary condition combining the absorbing boundary condition with the inputting boundary condition is developed to model the wave absorption and input effects of the truncated half space under layer system. The spatially two-dimensional (2D) problem consisting of the layer system with the artificial boundary condition is transformed equivalently into a 1D one along the vertical direction according to Snell's law. The resulting 1D problem is solved by the finite element method with a new explicit time integration algorithm. The 1D finite element artificial boundary method is verified by analyzing two engineering sites in time domain and by comparing with the frequency-domain transfer matrix method with fast Fourier transform.

Domain Mapping using Nonlinear Finite Element Formulation

  • Patro, Tangudu Srinivas;Voruganti, Hari K.;Dasgupta, Bhaskar;Basu, Sumit
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.29-36
    • /
    • 2009
  • Domain mapping is a bijective transformation of one domain to another, usually from a complicated general domain to a chosen convex domain. This is directly useful in many application problems like shape modeling, morphing, texture mapping, shape matching, remeshing, path planning etc. A new approach considering the domain as made up of structural elements, like membranes or trusses, is developed and implemented using the nonlinear finite element formulation. The mapping is performed in two stages, boundary mapping and inside mapping. The boundary of the 3-D domain is mapped to the surface of a convex domain (in this case, a sphere) in the first stage and then the displacement/distortion of this boundary is used as boundary conditions for mapping the interior of the domain in the second stage. This is a general method and it develops a bijective mapping in all cases with judicious choice of material properties and finite element analysis. The consistent global parameterization produced by this method for an arbitrary genus zero closed surface is useful in shape modeling. Results are convincing to accept this finite element structural approach for domain mapping as a good method for many purposes.

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries

  • Deeks, Andrew J.
    • Structural Engineering and Mechanics
    • /
    • 제14권1호
    • /
    • pp.99-118
    • /
    • 2002
  • The scaled-boundary finite element method is a novel semi-analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one coordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling centre. This paper presents a general development of the scaled boundary finite-element method for two-dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through two examples. The first of these examples uses the standard finite element method to provide a comparable solution, while the second combines both solution techniques in a single analysis. One significant application of the new technique is the generation of transition super-elements requiring few degrees of freedom that can connect two regions of vastly different levels of discretisation.

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • 대한조선학회지
    • /
    • 제24권4호
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

밀도가 상이한 두 유체층에서 부유체 동유체력 특성의 수치적 해석 (Numerical Analysis of Hydrodynamic Forces on a Floating Body in Two-layer Fluids)

  • 김미근;구원철
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.369-376
    • /
    • 2010
  • In this study, a radiation and a diffraction problems of a floating body in two-layer fluids were solved by the Numerical Wave Tank(NWT) technique in the frequency domain. In two-layer fluids, two different wave modes exist and the hydrodynamic coefficients can be obtained separately for each mode. The two-domain Boundary Element Method(BEM) in the potential fluid using the whole-domain matrix scheme was used to investigate the characteristics of wave forces, added mass and damping coefficients. The effects of the ratio of density and water depth in the lower domain were also evaluated and compared with given references.

2차원 경계요소법에 의한 초음파 산란음장의 해석과 응용 (Analysis of Ultrasonic Scattering Fields by 2-D Boundary Element Method and Its Application)

  • 정현조
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1439-1444
    • /
    • 2005
  • A two-dimensional boundary element method was used for the scattering analysis of side-drilled hole(SDH). The far-field scattering amplitude was calculated for shear vertical(SV) wave, and their frequency and time-domain results were presented. The time-domain scattering amplitude showed the directly reflected wave from the SDH leading edge as well as the creeping wave. In an immersion, pulse-echo testing, two measurement models were introduced to predict the response from SDHs. The 2-D boundary element scattering amplitude was converted to the 3-D amplitude to be used in the measurement model. The receiver voltage was calculated fer SV wave incidence at 45$^{\circ}C$ on the 1 m diameter SDH, and the result was compared with experiment.

Free surface simulation of a two-layer fluid by boundary element method

  • Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권3호
    • /
    • pp.127-131
    • /
    • 2010
  • A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT). The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.