• Title/Summary/Keyword: Two-dimensional magnetic properties

Search Result 57, Processing Time 0.025 seconds

Multi-scale Driving of Turbulence and Astrophysical Implications

  • Yoo, Hyunju;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • Turbulence is a common phenomenon in astrophysical fluids such as the interstellar medium (ISM) and the intracluster medium (ICM). In turbulence studies it is customary to assume that fluid powered by an energy injection on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales simultaneously. In this work, we assume multiple energy injection scale (2${\surd}$12 and 15

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

One-dimensionally Ordered Array of Co and Fe Nanoclusters on Carburized-W(110) via Template Assisted Self-Assembly

  • Kim, Ji-Hyun;Yang, Serlun;Kim, Jae-Sung;Lukashev, Pavel;Rojas, Geoffrey;Enders, Axel;Sessi, Violetta;Honolka, Jan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.135-136
    • /
    • 2012
  • Carbon atoms near the surface of W(110) induce reconstructions such as $R(15{\times}12)$ -C/W(110) which consists of two characteristic parts, one square shaped and bright protrusion and two smaller ones. In the atomic resolution STM image, the bigger protrusion shows the periodicities of clean W(110), indicating that it is almost carbon poor region. The smaller protrusion contains hexagonal carbide surface layer of ${\alpha}$-W2C on W(110). Employing this carburized W(110) as templates, we grow Co and Fe clusters of less than ten atoms. Due to the selectivity of bonding sites, growth of larger cluster is highly unfavorable for Co and the size of clusters is very uniform. Since Co atoms prefer to sit on the bigger protrusion rather than smaller one, Co cluster can be arranged one-dimensionally in $R(15{\times}12)$-C/W(110) with quite uniform size distribution. However, Fe clusters sit on both sites without favored site, but still with uniform size distribution. On the other hand, Fe clusters can be grown with quasi one-dimensional order in $R(15{\times}3)$-C/W(110), which consists of only smaller protrusions. We investigate the magnetic properties of the ordered nano-sized clusters. Experiments using XMCD reveals little magnetic moment of Co cluster on $R(15{\times}12)$-C/W(110). This observation is consistent with the predictions of our first principles calculations that small Co clusters can be nonmagnetic or antiferromagnetic with low mean magnetic moment per atom.

  • PDF

Effects of multiple driving scales on incompressible turbulence

  • Yoo, Hyun-Ju;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.75.2-75.2
    • /
    • 2012
  • Turbulence is ubiquitous in astrophysical fluids such as the interstellar medium and intracluster medium. To maintain turbulent motion, energy must be injected into the fluids. In turbulence studies, it is customary to assume that the fluid is driven on a scale, but there can be many different driving mechanisms that act on different scales in astrophysical fluids. We expect different statistical properties of turbulence between turbulence with single driving scale and turbulence with double driving scales. In this work, we perform 3-dimensional incompressible MHD turbulence simulations with energy injection in two ranges, 2${\surd}$12 (large scale) and 15

  • PDF

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

Syntheses and Characteristics of $Ln_xCa_{2-x}MnO_4$ {Ln=Gd, Nd, Pr, Sm} ($Ln_xCa_{2-x}MnO_4$ 상의 합성과 특성에 관한 연구 {Ln=Gd, Nd, Pr, Sm})

  • Seo, Sang-Il;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.196-199
    • /
    • 2000
  • Since the reports of CMR(colossal magnetoresistance) effects in some single crystal R-P phase $La_{1+x}Sr_{2-x}Mn_2O_7$, considerable researches have been carried out to find optimum composition and to understand the role of dimensionality in the CMR mechanism of this system. In this study, layered perovskite $Ln_xCa_{1-x}MnO_{4}$ (x=0.5, Ln=Pr, Nd, Sm, Gd) phases were synthesized by solid state reaction and their structures were refined by Rietveld method. Electrical and magnetic properties were measured between room temperature and liquid helium temperature and compared with those of two dimensional $La_{1.4}Sr_{1.6}Mn_2O_7$ phase.

  • PDF

2-Dimensional Fluxgate Sensor using Ferrite Ring Core (페라이트 링코어를 이용한 2차원 Fluxgate 센서)

  • 임재환;박한석;안영주;김남호;류지구
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, we have a fluxgate sensor with ferrite core. Thought sensor is consist of one excitation coil and two pick-up coil, and A lock-in amplifier circuity is designed for Signal processing of picking up 2nd harmonics from pick-up coils. Excitation coils is turned by 20 turns, and pick-up coil for picking up harmonics is turned by 40 turns eachother. It convert 2nd harmonics to DC output voltage. Measured output voltage and sensitivity, direction of sensor about out side magnetic field, and also sensor output properties about excitation frequency and current.

  • PDF

Quantum Transition Properties of Quasi-Two Dimensional Si System in Electron Deformation Potential Phonon Interacting (전자 포텐셜 변형과 포논 상호작용에 의한 준 이차원 Si 구조의 전도 현상 해석)

  • Lee, Su-Ho;Kim, Young-Mun;Kim, Hai-Jai;Joo, Seok-Min
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.129-134
    • /
    • 2017
  • We investigated theoretically the quantum optical transition properties of Si, in quasi 2-Dimensinal Landau splitting system, based on quantum transport theory. We apply the quantum transport theory (QTR) to the system in the confinement of electrons by square well confinement potential under linearly polarized oscillating field. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on four transition processes, namely, the intra-leval transition process, the inter-leval transition process, the phonon emission transition process and the phonon absorption transition process.

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

Buckling behavior of smart MEE-FG porous plate with various boundary conditions based on refined theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.279-298
    • /
    • 2016
  • Present disquisition proposes an analytical solution method for exploring the buckling characteristics of porous magneto-electro-elastic functionally graded (MEE-FG) plates with various boundary conditions for the first time. Magneto electro mechanical properties of FGM plate are supposed to change through the thickness direction of plate. The rule of power-law is modified to consider influence of porosity according to two types of distribution namely even and uneven. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM plate under magneto-electrical field via Hamilton's principle. An analytical solution procedure is exploited to achieve the non-dimensional buckling load of porous FG plate exposed to magneto-electrical field with various boundary condition. A parametric study is led to assess the efficacy of material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage, boundary conditions, aspect ratio and side-to-thickness ratio on the non-dimensional buckling load of the plate made of magneto electro elastic FG materials with porosities. It is concluded that these parameters play remarkable roles on the dynamic behavior of porous MEE-FG plates. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.