• Title/Summary/Keyword: Two-and-three steel plate girder

Search Result 10, Processing Time 0.025 seconds

Development and Experimental Performance Evaluation of Steel Composite Girder by Turn Over Process (단면회전방법을 적용한 강합성 소수주거더 개발 및 실험적 성능 평가)

  • Kim, Sung Jae;Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.407-415
    • /
    • 2010
  • In Korea, more than 90% of the total number of steel bridges built for 40~70 m span length is a steel box-girder bridge type. A steel box-girder bridge is suitable for long span or curved bridges with outstanding flexural and torsional rigidity as well as good constructability and safety. However, a steel box-girder bridge is uneconomical, requiring many secondary members and workmanship such as stiffeners and ribs requiring welding attachments to flanges or webs. Therefore, in US and Japan, a plate girder bridge, which is relatively cheap and easy to construct is generally used. One type of the plate girder bridge is the two- or three-main girder plate bridge, which is a composite plate girder bridge that minimizes the number of required main girders by increasing the distance between the adjacent girders. Also, for the simplification of girder section, the stiffener which requires attachment to the web is not required. The two-main steel girder plate bridge is a representative type of plate girder bridges, which is suitable for bridges with 10 m effective width and has been developed in the early 1960s in France. To ensure greater safety of two- or three-main girder plate bridges, a larger steel section is used in the bridge domestically than in Europe or Japan. Also, the total number of two- or three-main girder plate bridge constructed in Korea is significantly less than the steel box girder bridge due to a lack of designers' familiarity with more complex design detailing of the bridge compare to that of a steel box girder bridge design. In this study, a new construction method called Turn Over method is proposed to minimize the steel section size used in a two- or three-main girder plate bridge by applying prestressing force to the member using confining concrete section's weight to reduce construction cost. Also, a full scale 20 m Turn Over girder specimen and a Turn Over girder bridge specimen were tested to evaluate constructability and structural safety of the members constructed using Turn Over process.

Numerical study of stress states near construction joint in two-plate-girder bridge with cast-in-place PC slab

  • Yamaguchi, Eiki;Fukushi, Fumio;Hirayama, Naoki;Kubo, Takemi;Kubo, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.173-184
    • /
    • 2005
  • For reducing construction cost, two-plate-girder bridges are getting popular in Japan. This type of bridge employs a PC slab, which is often cast-in-place. In such a case, concrete is not usually cast over the whole slab at one time: some portions are constructed earlier than the rest. Therefore, a construction joint is inevitably created. Due to the drying shrinkage of concrete, tension stress may occur in concrete slab. High tensile stress can be expected near the construction joint where concretes with different ages meet. Moreover, prestressing is not applied over the whole length of slab at one time. This may also serve as a source of tensile stress in the slab. Thus there is a chance that cast-in-place PC slab, especially near the construction joint, may be subjected to tensile cracking. In the present study, stress states near the construction joint in the cast-in-place PC slab of a two-plate-girder bridge are investigated numerically. The finite element method is employed and the three-dimensional analysis is conducted to see the influence of dry shrinkage and prestressing. The stress states in the PC slab thus obtained are discussed. The simplified model of a plate girder for this class of analysis is also proposed.

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Redundancy of the Composite Twin Steel Plate Girder Bridgeaccording to the Dimension and Spacing of Cross Beams (강합성 플레이트 2-거더교의 가로보 제원 및 설치 간격에 따른 여유도 평가)

  • Park, Yong Myung;Joe, Woom Do Ji;Baek, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • In this paper, a numerical study on the evaluation of the redundancy according to the dimension and spacing of cross beams in the composite twin steel plate girder bridges that are generally recognized as a non-redundant load path structures, has been performed. Specifically, a two-lane three-span continuous (40+50+40m) bridge with I-section cross beams which serve as cross bracing, and without a lateral bracing were considered. The material and geometric nonlinear analyses were conducted to evaluate the ultimate loading capacity of the intact and damaged bridge in which one of the two girders is seriously fractured. Through the numerical analyses, it was recognized that there is little difference in redundancy according to the variation of the dimension and spacing of the cross beams for both intact and damaged bridges.

Redundancy Evaluation of the Composite Two Steel Plate-Girder Bridges (강합성 플레이트 2-거더교의 여유도 평가)

  • Park, Yong-Myung;Joe, Woom-Do-Ji
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.611-620
    • /
    • 2006
  • The composite two plate-girder bridges are generally defined as a non-redundant load path structure because the bridge can collapse if one of the two girders is seriously damaged by a fatigue crack. In this paper, a numerical study on the evaluation of the after-fracture redundancy of the composite two-girder bridges was accomplished. The evaluation has been performed on the simple and three-span continuous bridges with I-section cross beams which serve as transverse bracing, and with or without the bottom lateral bracing system. The load carrying capacities of the intact and damaged bridges with or without lateral bracing were evaluated from material and geometric nonlinear analysis, respectively and the redundancy was evaluated for each case. It was acknowledged from the analytical results that both simple and continuous intact two-girder bridges have sufficient redundancy even without lateral bracing, but it takes an important role to improve the redundancy of damaged bridges.

Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features (가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링)

  • Hong, Dong-Soo;Do, Han-Sung;Na, Won-Bae;Kim, Jeong-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.61-73
    • /
    • 2009
  • In this paper, hybrid health monitoring techniques using acceleration-impedance features are newly proposed to detect two damage-type in steel plate-girder bridges, which are girder's stiffness-loss and support perturbation. The hybrid techniques mainly consists of three sequential phases: 1) to alarm the occurrence of damage in global manner, 2) to classify the alarmed damage into subsystems of the structure, and 3) to estimate the classified damage in detail using methods suitable for the subsystems. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation (RMSD) method. The feasibility of the proposed hybrid technique is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid acceleration-impedance signatures were measured for several damage scenarios. Also, the effect of temperature on the accuracy of the impedance-based damage monitoring results are experimentally examined from combined scenarios of support damage cases and temperature changes.

A Study on FE Modeling Techniques of Steel Plate Girder Bridge with Composite Section for the Dynamic Analysis (동특성 분석을 위한 합성단면을 갖는 교량구조물의 FE 모델링 기법)

  • Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2006
  • The dynamic characteristics of a bridge deduced by using the modeling techniques depend on its stiffness and mass calculated from its geometric model. This research develops the FE modeling techniques for a steel plate girder bridge with composite section. and proves their validity by comparing the results with those from actual measurement. The FE modeling techniques are divided into two categories--a simplified one and two-dimensional model and a detailed three-dimensional model. In the meantime, the dynamic responses of the bridge tested for this research were measured by the ambient vibration some of accelerometers were been attached to its upper slab girder under normal traffic load. The Cross Power Spectrum obtained from the measurement was used to analyze the dynamic characteristics by natural excitation techniques. The analytic results are compared to those of each FE modeling, and thereby the modeling techniques were proved to be valid.

Behavior of optimized prestressed concrete composite box-girders with corrugated steel webs

  • Lu, Yanqiu;Ji, Lun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The traditional prestressed concrete composite box-girders with corrugated steel webs have several drawbacks such as large deflection and potential local buckling. In this study, two methods were investigated to optimize and improve the prestressed concrete composite box-girders with corrugated steel webs. The first method was to replace the concrete bottom slab with a steel plate and the second method was to support the concrete bottom slab on the steel flanges. The behavior of the prestressed concrete composite box-girders with corrugated steel webs with either method was studied by experiments on three specimens. The test results showed that behavior of the optimized and upgraded prestressed concrete composite box-girders with corrugated steel webs, including ultimate bearing capacity, flexural stiffness, and crack resistance, is greatly improved. In addition, the influence of different shear connectors, including perfobond leisten (PBL) and stud shear connectors, on the behavior of prestressed concrete composite box-girders with corrugated steel webs was studied. The results showed that PBL shear connectors can greatly improve the ultimate bearing capacity, flexural stiffness and crack resistance property of the prestressed concrete composite box-girders with corrugated steel webs. However, for the efficiency of prestressing introduced into the girder, the PBL shear connectors do not perform as well as the stud shear connectors.

Strengthening of T-beams using external steel clamps and anchored steel plates

  • Yunus Dere;Yasin Onuralp Ozkilic;Ali Serdar Ecemis;Hasan Husnu Korkmaz
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.405-417
    • /
    • 2023
  • In order to strengthen the reinforced concrete T-beams having insufficient shear strength, several strengthening techniques are available in the literature. In this study, three different strengthening strategies were numerically studied. First one is affixing steel plates to the beam surfaces. Second one includes tightening external steel bars vertically similar to beam stirrups. The last one is simultaneous application of these two strengthening procedures which is particularly proposed in this work. Available experimental test series in the literature were handled in the study. Finite element (FE) models of reinforced concrete beam specimens having sufficient (Beam-1) and low shear capacity (Beam-2) were created within ABAQUS environment. Strengthened beams with different techniques were also modelled to reflect improved shear capacity. FE simulations made it possible to investigate parameters that were not examined during the previous experimental studies. The results of the analyses were then compared and found consistent with the experimentally obtained data. Experimental and FEM analysis results are in agreement between 1% (closest) and 6%. (maximum). Beam-2 was stregthened with 5 new porposed methods. The rate of increase in shear strength varies between 33% and 64%. It was found that, the strengthening techniques were fairly useful in improving the shear capacity of the considered girder. The model with the proposed strengthening alternative has accomplished a higher load carrying capacity, ductility and stiffness than all of the other models.

A Numerical Study on Load Distribution Factors for Simplified Composite H-Beam Panel Bridges (강합성 초간편 H형강 교량의 하중분배계수에 관한 해석적 연구)

  • Park, Jong Sup;Kim, Jae Heung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2009
  • The load distribution factor (LDF) values of simplified composite H beam panel bridges (SCHPBs) that were subjected to one lane and two lane loads were investigated using three dimensional finite element analyses with the computer program ABAQUS (2007). This study considered some design parameters such as the slab thickness, the steel plate thickness, the span length, and the continuity of the SCHPBs in the development of new LDFs. The distribution values that were obtained from these analyses were compared with those from the AASHTO Standard, LRFD, and the equations presented by Tarhini and Frederick, Huo et al., Back and Shin, and Cai. The AASHTO Standard distribution factors for SCHPBs were found to be very conservative. Sometimes, the distribution values from the finite element analyses for interior girders were similar to the results of the AASHTO LRFD, whereas the values for exterior girders were conservative in most cases. The new distribution values that were presented in this study produced LDFs that are more conservative than those from the finite element method. For the simple application of the design to SCHPBs, bridge engineers can use 0.42 for the interior girder and 0.32 for the exterior girder. The proposed values improve the current design procedure for the LDF problem and increase SCHPB design efficiency.