• Title/Summary/Keyword: Two-Track Control

Search Result 252, Processing Time 0.025 seconds

A Study on the Modeling and Control of High-Speed/High-Accuracy Position Control System (고속/정밀 위치제어시스템의 모델링 및 제어에 관한 연구)

  • 신호준;박민규;윤석찬;한창수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.83-89
    • /
    • 2000
  • This paper presents a dynamic modeling and a sliding mode controller for the high-speed / high-accuracy position control system. Selected target system is the wire bonder head assembly which is used in semiconductor assembly process. This system is a reciprocating one around the pivot point that consists of VCM(voice coil motor) as a actuator and transducer horn as a bonding tool. For the modeling elements, the system is divided into electrical circuit, magnetic circuit and mechanical system. Each system is modeled by using the bond graph method and united into the full system. Two major aims are considered in the design of the controller. The first one is that the horn must track the given reference trajectory. The second one is that the controller must be realizable by using the DSP board. Computer simulation and experimental results show that the designed sliding mode controller provides better performance than the PID controller.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

An Implementation of Realtime Pitch Analyzer Using MatLab (MatLab를 이용한 실시간 피치분석기 구현)

  • Park Il-Seo;An Hye-Young;Kim Dae-Hyun;Jo Cheol-Woo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.147-150
    • /
    • 2002
  • This paper describes procedures to implement a real-time pitch analyzer using Matlab. Matlab is a multi-purpose signal-processing tool. Using this tool real-time analysis tool is implemented. To make it real-time we used data acquisition toolbox which comes with Matlab. Autocorrelation method was used as a basic algorithm. The resulting pitch informations are displayed in two different forms, i.e. instantaneous pitch plot and pitch track. V/UV decision is performed using zero crossing rate and energy Informations based on 500 utterances.

  • PDF

Novel Predictive Maximum Power Point Tracking Techniques for Photovoltaic Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Haruna, Junnosuke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.277-286
    • /
    • 2016
  • This paper offers two Maximum Power Point Tracking (MPPT) systems for Photovoltaic (PV) applications. The first MPPT method is based on a fixed frequency Model Predictive Control (MPC). The second MPPT technique is based on the Predictive Hysteresis Control (PHC). An experimental demonstration shows that the proposed techniques are fast, accurate and robust in tracking the maximum power under different environmental conditions. A DC/DC converter with a high voltage gain is obligatory to track PV applications at the maximum power and to boost a low voltage to a higher voltage level. For this purpose, a high gain Switched Inductor Quadratic Boost Converter (SIQBC) for PV applications is presented in this paper. The proposed converter has a higher gain than the other transformerless topologies in the literature. It is shown that at a high gain the proposed SIQBC has moderate efficiency.

Application of dithering control for the railway wheel squealing noise mitigation

  • Marjani, Seyed Rahim;Younesian, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • A new methodology for mitigation of the wheel squealing is proposed and investigated based on the dithering control. The idea can be applied in railway lines particularly in urban areas. The idea is clearly presented, and applied to a validated model. A full-scale model including the vehicle, curved track and wheel/rail contact is developed in the time domain to analyze the possibility and level of wheel squeal noise. Comparing the numerical results with a field test, the model is validated in different levels namely i) occurrence, ii) squealing frequency and iii) noise level. Two different approaches are proposed a) dithering of the wheel with piezoelectric patches and b) dithering of the rail with piezoelectric stacks. The noise level as well as the wheel responses is compared after applying the control strategy. A parametric study is carried out and effect of the dithering voltage and frequency on the squealing noise is investigated. It is found that both the strategies perform quite effectively within the saturating threshold of piezoelectric actuators.

ORBITAL MANEUVER USING TWO-STEP SLIDING MODE CONTROL (2단 슬라이딩 제어기법을 이용한 인공위성의 궤도조정)

  • 박종옥;이상욱;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.235-244
    • /
    • 1998
  • The solutions of orbital maneuver problem using the sliding mode control in the presence of the erath gravitational perturbations is obtained. Especially, the optimization of consuming fuel for maneuver is performed. The impulsive solution to Lambert's problem using the combined equation method to minimize total ${\Delta}V is used for the desired orbit and the maneuver times. Two-step sliding mode control method is introduced for satisfying the boundary conditions of finite-thrust rendezvous problem at the end of maneuver time. Using the new approach to the orbit maneuver problem, two-step sliding mode control, orbit maneuvers are processed. The solutions to a rendezvous using the optimal control are obtained, and they are compared to the results by two-step sliding control.According to the new approach for orbit maneuver, the thrust-coast-thrust type controller is obtained to make satellite to track desired Lambert's orbit, and the total ${\Delta}V$ required for maneuver is resonable in comparison with the impulsive solution to Lambert's problem. The final state variables, also are close to the boundary conditions at the end of maneuver times.

  • PDF

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Dynamic Performance Analysis for Secondary Suspension of Maglev Control Systems with a Combined Lift and Guidance (편심배치방식 자기부상 제어시스템의 2차 현가에 대한 동특성 해석)

  • Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.53-65
    • /
    • 1992
  • For improving the performance of maglev systems with a combined lift and guidance, it is suggested that the multivariable control systems and a secondary suspension should be added. The former is required to reject both track irregularities in vertical disturbances and wind gusts in lateral disturbances, and the latter to guarantee passengers against an unsatisfied criteria in ride quality. In this paper, bond graph model for the study of nonlinear dynamics of maglev systems with a combined lift and guidance is presented briefly. And, the secondary suspension is analyzed to understand the role of stiffness and damping factors in passive devices. Finally, LQG/LTR mulitivariable control systems are designed for the overall maglev systems with and without secondary suspension, and then the system performances in these two cases are evaluated.

  • PDF

A Study on the Control Strategy to Minimize Voids in Resin Transfer Mold Filling Process (RTM 공정에서 기공 최소화를 위한 공정 제어에 관한 연구)

  • Lee Doh Hoon;Jeon Young Jae;Lee Woo Il;Um Moo Kwang;Byun Joon Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.292-296
    • /
    • 2004
  • In case of Resin Transfer Molding(RTM) process, 'race-track' effects and non-uniform fiber volume fraction may cause undesirable resin flow pattern and thus result in dry spots, which affect the mechanical properties of the finished parts. In this study, a real time RTM control strategy to prevent these unfavorable effects is proposed. The control strategy consists of two 'stages' depending on the extent the resin front has reached. Through numerical simulations and experiments, the validity of the proposed scheme is demonstrated. The results show that the proposed scheme is effective in reducing the void formation during RTM mold filling.

  • PDF

Angles-Only Initial Orbit Determination of Low Earth Orbit (LEO) Satellites Using Real Observational Data

  • Hwang, Hyewon;Park, Sang-Young;Lee, Eunji
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.187-197
    • /
    • 2019
  • The Optical Wide-field patroL-Network (OWL-Net) is a Korean optical space surveillance system used to track and monitor objects in space. In this study, the characteristics of four Initial Orbit Determination (IOD) methods were analyzed using artificial observational data from Low Earth Orbit satellites, and an appropriate IOD method was selected for use as the initial value of Precise Orbit Determination using OWL-Net data. Various simulations were performed according to the properties of observational data, such as noise level and observational time interval, to confirm the characteristics of the IOD methods. The IOD results produced via the OWL-Net observational data were then compared with Two Line Elements data to verify the accuracy of each IOD method. This paper, thus, suggests the best method for IOD, according to the properties of angles-only data, for use even when the ephemeris of a satellite is unknown.