• Title/Summary/Keyword: Two-Temperature Model

Search Result 1,881, Processing Time 0.035 seconds

Electrics and Noise Performances of AlGaN/GaN HEMTs with/without In-situ SiN Cap Layer (In-situ SiN 패시베이션 층에 따른 AlGaN/GaN HEMTs의 전기적 및 저주파 잡음 특성)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.60-63
    • /
    • 2023
  • The AlGaN/GaN heterostructure has high electron mobility due to the two-dimensional electron gas (2-DEG) layer, and has the characteristic of high breakdown voltage at high temperature due to its wide bandgap, making it a promising candidate for high-power and high-frequency electronic devices. Despite these advantages, there are factors that affect the reliability of various device properties such as current collapse. To address this issue, this paper used metal-organic chemical vapor deposition to continuously deposit AlGaN/GaN heterostructure and SiN passivation layer. Material and electrical properties of GaN HEMTs with/without SiN cap layer were analyzed, and based on the results, low-frequency noise characteristics of GaN HEMTs were measured to analyze the conduction mechanism model and the cause of defects within the channel.

Arsenic Contamination of Groundwater a Grave Concern: Novel Clay-based Materials for Decontamination of Arsenic (V)

  • Amrita Dwivedi;Diwakar Tiwari;Seung Mok Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.199-205
    • /
    • 2023
  • Arsenic is a highly toxic element, and its contamination is widespread around the world. The natural materials with high selectivity and efficiency toward pollutants are important in wastewater treatment technology. In this study, the mesoporous synthetic hectorite was synthesized by facile hydrothermal crystallization of gels comprising silica, magnesium hydroxide, and lithium fluoride. Additionally, the naturally available clay was modified using zirconium at room temperature. Both synthetic and modified natural clays were employed in the removal of arsenate from aquatic environments. The materials were fully characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) analyses. The synthesized materials were used to remove arsenic (V) under varied physicochemical conditions. Both materials, i.e., Zr-bentonite and Zr-hectorite, showed high percentage removal of arsenic (V) at lower pH, and the efficiency decreased in an alkaline medium. The equilibrium-state sorption data agrees well with the Langmuir and Freundlich adsorption isotherms, and the maximum sorption capacity is found to be 4.608 and 2.207 mg/g for Zr-bentonite and Zr-hectorite, respectively. The kinetic data fits well with the pseudo-second order kinetic model. Furthermore, the effect of the background electrolytes study indicated that arsenic (V) is specifically sorbed at the surface of these two nanocomposites. This study demonstrated that zirconium intercalated synthetic hectorite as well as zirconium modified natural clays are effective and efficient materials for the selective removal of arsenic (V) from aqueous medium.

Real-time EKF-based SOC estimation using an embedded board for Li-ion batteries (임베디드 보드를 사용한 EKF 기반 실시간 배터리 SOC 추정)

  • Lee, Hyuna;Hong, Seonri;Kang, Moses;Sin, Danbi;Beak, Jongbok
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • Accurate SOC estimation is an important indicator of battery operation strategies, and many studies have been conducted. The simulation method which was mainly used in previous studies, is difficult to conduct real-time SOC estimation like real BMS environment. Therefore, this paper aims to implement a real-time battery SOC estimation embedded system and analyze problems that can arise during the verification process. In environment consisting of two Raspberry Pi boards, SOC estimation with the EKF uses data measured by the Simscape battery model. Considering that the operating characteristics of the battery vary depend on the temperature, the results were analyzed at various ambient temperatures. It was confirmed that accurate SOC estimation was performed even when offset fault and packet loss occurred due to communication or sensing problems. This paper proposes a guide for embedded system strategies that enable real-time SOC estimation with errors within 5%.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Spatio-temporal pattern of ecological droughts by using the Standardized Water Supply Demand Index in the Hwang River.

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Won-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.158-158
    • /
    • 2022
  • Ecological drought consequences have received a lot of attention in recent years. Thus, ecological drought was proposed as a new drought category to characterize the impact of drought on ecosystems. The current study used a unique drought index, the standardized supply-demand water index (SSDI), and a run theory to detect ecological drought occurrences and characteristics such as drought-affected area, drought severity, drought duration, drought frequency, and drought orientation in the Hwang River, an environmentally valuable region. Hence, to assess drought-prone areas, the bivariate probability and return period will be calculated using a two-dimensional joint copula. The core results show that (a) the Spatio-temporal characteristics of ecological drought were successfully recognized using the spatial and temporal identification approach; (b) in comparison to the SPEI meteorological drought index, the SSDI is more credible and can more readily and effectively capture the entire properties of ecological drought information; (c) the Hwang river had seen the most severe drought occurrences between the late 1990s and the mid-2020s, with 48.3 percent occurring before the twenty-first century; (d) Severe ecological drought occurrences occurred more frequently in most areas of the Hwang River (e) Only the drought duration and severity in the Hwang area were more responsive to temperature when temperatures rise around 1.1℃, the average drought duration and severity rise around 16 % and 26 %, respectively. This suggested that the Hwang River has been exposed to more severe heat stress in the twenty-first century. Thereupon droughts in the twenty-first century occurred with bigger affected regions, longer durations, higher frequency, and more intensity.

  • PDF

Development of Thermal Performance Prediction for Large Planar Military Antenna with Multi-Cooling Channels (다중 냉각유로가 적용된 수랭식 군사용 대면적 안테나의 열성능 예측 기술)

  • YeRyun Lee;SungWook Jang;PilGyeong Choi;NohJin Kwak;JunJung Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2024
  • Large planar military antenna boasts a range of electrical components, including TRA(Transmit-Receive Assembly), signal processors, etc. which engage in computations and calculations. These processes generate a significant amount of heat, leading to unforeseen consequences for the equipment. To mitigate these adverse effects, it's imperative to implement a cooling system that can effectively reduce heat-related issues. Given the antenna's intricate nature and the multitude of components it houses, a two-step estimation process is necessary. The first step involves a comprehensive model calculation to determine the total flow characteristics, while the second step entails a thermal analysis of individual TRA set. In this study, we depicted an antenna set using simplified 3D models of its components, considering their material and thermal properties. The sequential analysis process facilitated the calculation of branched flow rates, providing insights into the individual TRA. This approach also allowed us to design a cooling system for the TRA set, assessing its thermal stability in high-temperature environments. To ensure the optimal performance of TRA, breaking down the analysis into stages based on the cooling system's structure can assist operators in predicting numerical results more effectively.

Effects of hygro-thermal environment on dynamic responses of variable thickness functionally graded porous microplates

  • Quoc-Hoa Pham;Phu-Cuong Nguyen;Van-Ke Tran
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.563-581
    • /
    • 2024
  • This paper presents a novel finite element model for the free vibration analysis of variable-thickness functionally graded porous (FGP) microplates resting on Pasternak's medium in the hygro-thermal environment. The governing equations are established according to refined higher-order shear deformation plate theory (RPT) in construction with the modified couple stress theory. For the first time, three-node triangular elements with twelve degrees of freedom for each node are developed based on Hermitian interpolation functions to describe the in-plane displacements and transverse displacements of microplates. Two laws of variable thickness of FGP microplates, including the linear law and the nonlinear law in the x-direction are investigated. Effects of thermal and moisture changes on microplates are assumed to vary continuously from the bottom surface to the top surface and only cause tension loads in the plane, which does not change the material's mechanical properties. The numerical results of this work are compared with those of published data to verify the accuracy and reliability of the proposed method. In addition, the parameter study is conducted to explore the effects of geometrical and material properties such as the changing law of the thickness, length-scale parameter, and the parameters of the porosity, temperature, and humidity on the free vibration response of variable thickness FGP microplates. These results can be applied to design of microelectromechanical structures in practice.

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

Factors Influencing the Activation of Brown Adipose Tissue in 18F-FDG PET/CT in National Cancer Center (양전자방출단층촬영 시 갈색지방조직 활성화에 영향을 미치는 요인 분석)

  • You, Yeon Wook;Lee, Chung Wun;Jung, Jae Hoon;Kim, Yun Cheol;Lee, Dong Eun;Park, So Hyeon;Kim, Tae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Purpose Brown fat, or brown adipose tissue (BAT), is involved in non-shivering thermogenesis and creates heat through glucose metabolism. BAT activation occurs stochastically by internal factors such as age, sex, and body mass index (BMI) and external factors such as temperature and environment. In this study, as a retrospective, electronic medical record (EMR) observation study, statistical analysis is conducted to confirm BAT activation and various factors. Materials and Methods From January 2018 to December 2019, EMR of patients who underwent PET/CT scan at the National Cancer Center for two years were collected, a total of 9155 patients were extracted, and 13442 case data including duplicate scan were targeted. After performing a univariable logistic regression analysis to determine whether BAT activation is affected by the environment (outdoor temperature) and the patient's condition (BMI, cancer type, sex, and age), A multivariable regression model that affects BAT activation was finally analyzed by selecting univariable factors with P<0.1. Results BAT activation occurred in 93 cases (0.7%). According to the results of univariable logistic regression analysis, the likelihood of BAT activation was increased in patients under 50 years old (P<0.001), in females (P<0.001), in lower outdoor temperature below 14.5℃ (P<0.001), in lower BMI (P<0.001) and in patients who had a injection before 12:30 PM (P<0.001). It decreased in higher BMI (P<0.001) and in patients diagnosed with lung cancer (P<0.05) In multivariable results, BAT activation was significantly increased in patients under 50 years (P<0.001), in females (P<0.001) and in lower outdoor temperature below 14.5℃ (P<0.001). It was significantly decreased in higher BMI (P<0.05). Conclusion A retrospective study of factors affecting BAT activation in patients who underwent PET/CT scan for 2 years at the National Cancer Center was conducted. The results confirmed that BAT was significantly activated in normal-weight women under 50 years old who underwent PET/CT scan in weather with an outdoor temperature of less than 14.5℃. Based on this result, the patient applied to the factor can be identified in advance, and it is thought that it will help to reduce BAT activation through several studies in the future.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.