• Title/Summary/Keyword: Two-Step Die

Search Result 72, Processing Time 0.024 seconds

Binder Wrap Analysis considering Gravity, Contact and Friction (접촉과 마찰을 고려한 바인더 랩의 유한 요소 해석)

  • 유동진;이종민;전기찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.87-95
    • /
    • 1996
  • The stamping process consists of two stages : First, the blank is held by the blank holder and then it is further formed into the die cavity by punch stroke. In actual stamping process, the accurate prediction of binder wrap is an indispensable step in sheet metal forming analysis because the initial plastic buckling induced by improper die design is directly related with fatal defect at the final stage. In the present work, an approach including the gravity effect of blank material and proper consideration of contact and friction is proposed. Computations are carried out for some actual auto-body parts using 3D FEM code to investigate the validity of the proposed methodology. Comparisons with experimental results show that the suggested scheme can be effectively applied to the precise prediction of binder wrap for arbitrarily curved die faces in which gravity and contact effect must be taken into account.

Development of Semiconductor Packaging Technology using Dicing Die Attach Film

  • Keunhoi, Kim;Kyoung Min, Kim;Tae Hyun, Kim;Yeeun, Na
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.361-365
    • /
    • 2022
  • Advanced packaging demands are driven by the need for dense integration systems. Consequently, stacked packaging technology has been proposed instead of reducing the ultra-fine patterns to secure economic feasibility. This study proposed an effective packaging process technology for semiconductor devices using a 9-inch dicing die attach film (DDAF), wherein the die attach and dicing films were combined. The process involved three steps: tape lamination, dicing, and bonding. Following the grinding of a silicon wafer, the tape lamination process was conducted, and the DDAF was arranged. Subsequently, a silicon wafer attached to the DDAF was separated into dies employing a blade dicing process with a two-step cut. Thereafter, one separated die was bonded with the other die as a substrate at 130 ℃ for 2 s under a pressure of 2 kgf and the chip was hardened at 120 ℃ for 30 min under a pressure of 10 kPa to remove air bubbles within the DAF. Finally, a curing process was conducted at 175 ℃ for 2 h at atmospheric pressure. Upon completing the manufacturing processes, external inspections, cross-sectional analyses, and thermal stability evaluations were conducted to confirm the optimality of the proposed technology for application of the DDAF. In particular, the shear strength test was evaluated to obtain an average of 9,905 Pa from 17 samples. Consequently, a 3D integration packaging process using DDAF is expected to be utilized as an advanced packaging technology with high reliability.

A Study on the impact on the quality of hemming the number of hemming process (헤밍 공정의 횟수가 헤밍 품질에 미치는 영향에 관한 연구)

  • Shin, Na-Eun;Choi, Moon-Ho;Choi, Young-Deok;Choi, Hae-Un;Jang, Rae-Seong;Choi, Kye-Kwang;Kim, Sei-Hwan;Yun, Jae-Woong;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • In this study, it was investigated by comparing the experimental hemming by the 3 steps and 2 steps in order to stabilize the quality of the hemming process. In the experimental results, the three-step hemming superior to the two-step one and the dimensional stability of part that was made by the three-step on was high. When the second stage Hemming has been found that the deflection caused by the force to the wear of the punch becomes larger plane can be folded by the hemming crimping and crimp uncertain.

Technical Issues in Pattern Machining (패턴 가공에서의 기술적인 고려사항)

  • 김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

Impact of Copper Densities of Substrate Layers on the Warpage of IC Packages

  • Gu, SeonMo;Ahn, Billy;Chae, MyoungSu;Chow, Seng Guan;Kim, Gwang;Ouyang, Eric
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In this paper, the impact of the copper densities of substrate layers on IC package warpage is studied experimentally and numerically. The substrate strips used in this study contained two metal layers, with the metal densities and patterns of these two layers varied to determine their impacts. Eight legs of substrate strips were prepared. Leg 1 to leg 5 were prepared with a HD (high density) type of strip and leg 6 to leg 8 were prepared with UHD (ultra high density) type of strip. The top copper metal layer was designed to feature meshed patterns and the bottom copper layer was designed to feature circular patterns. In order to consider the process factors, the warpage of the substrate bottom was measured step by step with the following manufacturing process: (a) bare substrate, (b) die attach, (c) applying mold compound (d) and post reflow. Furthermore, after the post reflow step, the substrate strips were diced to obtain unit packages and the warpage of the unit packages was measured to check the warpage trends and differences. The experimental results showed that the warpage trend is related to the copper densities. In addition to the experiments, a Finite Element Modeling (FEM) was used to simulate the warpage. The nonlinear material properties of mold compound, die attach, solder mask, and substrate core were included in the simulation. Through experiment and simulation, some observations were concluded.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF

Process and Die Design for the Forming of Flanged Thrust Engine Bearings (플랜지를 가진 추력 엔진베어링의 성형공정 및 금형 설계)

  • 김형종;곽인구
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.478-485
    • /
    • 2000
  • This study aims to Improve the productivity in forming of flanged thrust engine bearings from two kinds of laminated sheet materials by integrating the forming processes or by reducing the number of the subsequent sizing and machining processes or by modifying the forming tools used. For steel-Al rolled blank, a design scheme for the one-step forming operation and the geometry of the tool set required is suggested and is verified its usefulness by the finite element simulation. And for steel-Cu sintered blank, the results of experiment and finite element analysis show that it is possible to improve the dimensional accuracy of formed products and to reduce the number of sizing processes just by modifying the shape and dimensions of initial blanks and flange forming dies, and by controlling the spring force.

  • PDF

Finite Element Analysis Design of Axisymmetric Deep Drawing Process by Local Heating (국소 가열 방법을 이용한 2단계 축대칭 디프 드로잉 공정의 해석 및 설계)

  • Lee, Dong-Woo;Song, In-Seob;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 1993
  • The study is concerned with finite element analysis and design of axisymmetric deep drawing by local heating. When the bottom shape of a cup is not flat but in complex-shaped, i.e., hemispherical, the cup cannot be drawn in one or two processes in the conventional deep drawing process and the limit drawing ratio is limited as well. By introducing local heating selectively with regards to the heating position, the formability of the sheet metal can be greatly increased with the reduced number of processes. In the Process analysisthe rigid- viscoplastic finite element method is employed and the temperature effect is incorporated. Bishop's step-wise decoupled method is employed to analyze the thermomechanical interaction between deformation and heat transfer. Axisymmetric deep drawing of a hemisphere-bottomed cup has been analyzed for various combinations of heat application in the punch and the die. At the first stage of deep drawing stretch forming is practically carried out by firmly pressing the blankholder with the punch and the die heated at various levels of temperature. Then at the second stage the same cup is drawn for the saame or different combination of temperature. From the computation, it has thus been shown that the fromability of a cup is greatly increased in two-stage deep drawing with increased limet drawing ratio.

  • PDF

Applications to the Numerical Stamping Analysis of Tailor-welded Blanks (테일러드 블랭크의 스탬핑 성형해석에 관한 연구)

  • 이종민;최이천;최치수;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.110-120
    • /
    • 1998
  • Tailor-welded blanks are made of two or more different blanks in thickness or material. So car body with tailor-welded blanks need not reinforcement panels. However in order to make stamping tools for tailor-welded blanks, die engineers should know about the exact position of the welding line after the part is drawn. The necessity of knowledge about the position of welding line needs forming simulation methodology as a prior step in tooling. Therefor some parts of the simulation methodology are proposed and compared with the experimental results.