• Title/Summary/Keyword: Two-Photon Absorbed Polymerization

Search Result 4, Processing Time 0.019 seconds

Fabrication of Sub-100 nm Embossing Patterns using Weakly-Polymerized Region via Long-Exposure Technique (LET) in Two-Photon Polymerization (긴 레이저 조사방식에 의한 저밀도 이광자 광중합 영역을 이용한 Sub-100nm 정밀도의 엠보싱 패턴제작)

  • Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.1 s.190
    • /
    • pp.64-70
    • /
    • 2007
  • A long-exposing technique (LET) has been conducted to create nanoscale patterns applicable to diverse micro-devices using two-photon polymerization (TPP). By the weakly-polymerized region via the LET, double-layered embossing patterns can be fabricated simply in a single step. The LET makes possible a voxel and its surrounding to be fully grown into more than 500 nm in lateral size and weakly-polymerized region (WPR), respectively. In the WPR. interconnecting ribs between voxels are generated, and they lead to the creation of double-layered dot patterns. Moreover, by controlling the distance between voxels, various shapes of interconnecting rib can be fabricated when the LET is applied. Various embossing patterns were fabricated to evaluate the usefulness of the proposed technique as a novel nanopatterning technique in TPP.

Fabrication of Precise Patterns using a Laser Beam Expanding Technique in Nano-Replication Printing (nRP) Process (레이저 빔 단면확대를 이용한 나노 복화(複畵)공정의 패턴 정밀도 향상에 관한 연구)

  • Park Sang Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.175-182
    • /
    • 2005
  • A laser beam expanding technique is employed to fabricate precise nano-patterns in a nano-replication printing (nRP) process. In the nRP process, some patterns can be fabricated in the range of several microns inside on a polymerizable resin by using a volume-pixel (voxel) matrix that is transformed from a two-tone bitmap figure file. The liquid monomers are polymerized by means of a two-photon-absorption (TPA) phenomenon that is induced by a femtosecond (fs)-pulse laser. The yokels are generated consecutively to merge into adjoining yokels in the process of fabricating a pattern. The resolution of a fabricated pattern can be obtained under the diffraction limit of a laser beam by the two-photon absorbed polymerization (TPP). In this work, a beam-expanding technique has been applied to enlarge a working area and to fabricate precise patterns. Through this work, a working area is expanded by the technique as much as 2.5 times compared with a case of without a beam expanding technique, and precision of outside patterns is improved.

Recent Progress in the Nanoscale Additive Layer Manufacturing Process Using Two-Photon Polymerization for Fabrication of 3D Polymeric, Ceramic, and Metallic Structures (이광자 광중합 공정을 이용한 3차원 미세구조물 제작기술 동향)

  • Ha, Cheol-Woo;Lim, Tae-Woo;Son, Yong;Park, Suk-Hee;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.265-270
    • /
    • 2016
  • Recently, many studies have been conducted on the nano-scale fabrication technology using twophoton- absorbed polymerization induced by a femtosecond laser. The nano-stereolithography process has many advantages as a technique for direct fabrication of true three-dimensional shapes in the range over several microns with sub-100 nm resolution, which might be difficult to obtain by using general nano/microscale fabrication technologies. Therefore, two-photon induced nano-stereolithography has been recently recognized as a promising candidate technology to fabricate arbitrary 3D structures with sub-100 nm resolution. Many research works for fabricating novel 3D nano/micro devices using the two-photon nano-stereolithography process, which can be utilized in the NT/BT/IT fields, are rapidly advancing.