• 제목/요약/키워드: Two-Phase Natural Circulation Flow

검색결과 42건 처리시간 0.025초

타워형 태양열 흡수기의 열전달 특성 실험장치에 관한 연구 (Scale Down Design on Experiment Facility of the Water/Steam Receiver for Solar Power Tower)

  • 서호영;김종규;강용혁;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.676-679
    • /
    • 2007
  • This paper describes an experiment facility to measure the circulation characteristics of a water/steam receiver at various heat fluxes. The natural circulation type receiver was considered in this study. The experiment facility was designed to satisfy circulation balance with an appropriate scale down. As a result, riser tube inner diameter was 7.4 mm and water circulation was 0.319 kg/s. Downcomer tube inner diameter by circulation balance was 9.52 mm and the quality was from 0 to 0.23.

  • PDF

Numerical investigation of two-component single-phase natural convection and thermal stratification phenomena in a rod bundle with axial heat flux profile

  • Grazevicius, Audrius;Seporaitis, Marijus;Valincius, Mindaugas;Kaliatka, Algirdas
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3166-3175
    • /
    • 2022
  • The most numerical investigations of the thermal-hydraulic phenomena following the loss of the residual heat removal capability during the mid-loop operation of the pressurized water reactor were performed according to simplifications and are not sufficiently accurate. To perform more accurate and more reliable predictions of thermal-hydraulic accidents in a nuclear power plant using computational fluid dynamics codes, a more detailed methodology is needed. Modelling results identified that thermal stratification and natural convection are observed. Temperatures of lower monitoring points remain low, while temperatures of upper monitoring points increase over time. The water in the heated region, in the upper unheated region and the pipe region was well mixed due to natural convection, meanwhile, there is no natural convection in the lower unheated region. Water temperature in the pipe region increased after a certain time delay due to circulation of flow induced by natural convection in the heated and upper unheated regions. The modelling results correspond to the experimental data. The developed computational fluid dynamics methodology could be applied for modelling of two-component single/two-phase natural convection and thermal stratification phenomena during the mid-loop operation of the pressurized water reactor or other nuclear and non-nuclear installations at similar conditions.

타워형 태양열 발전 흡수기의 열유속에 따른 수순환 특성 연구 (Water Circulation Characteristics of a Water/Steam Receiver for Solar Power Tower System at Various Heat Fluxes)

  • 서호영;김종규;강용혁;김용찬
    • 한국태양에너지학회 논문집
    • /
    • 제28권2호
    • /
    • pp.1-9
    • /
    • 2008
  • This paper describes water circulation characteristics of a water/steam receiver at various heat fluxes. The water/steam receiver for a solar tower power system is a natural circulation type. Experimental conditions of water and steam were set at a pressure of 5 bar and temperature of $151.8^{\circ}C$. The experimental device for the water/steam receiver consisted of a steam drum, upper/lower header, riser tubes, and downcomer tube. The experiments were conducted by varying heat fluxes in terms of mass flow rate in each riser tube. However, the total mass flow rate on the riser tubes was fixed at 217.4 g/s. For the uniform heat flux, while the water temperature of the steam drum and upper header were kept at steady state, the temperature of the lower header was fluctuated. For the non-uniform heat flux, while the temperature of the steam drum was kept steady state, the temperature difference increased in the right and left side of the upper header, and the temperature of the lower header was fluctuated.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

ANALYSIS OF A STATION BLACKOUT SCENARIO WITH AN ATLAS TEST

  • Kim, Yeon-Sik;Yu, Xin-Guo;Kang, Kyoung-Ho;Park, Hyun-Sik;Cho, Seok;Choi, Ki-Yong
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.179-190
    • /
    • 2013
  • A station blackout experiment called SBO-01 was performed at the ATLAS facility. From the SBO-01 test, the station blackout scenario can be characterized into two typical phases: A first phase characterized by decay heat removal through secondary safety valves until the SG dryouts, and a second phase characterized by an energy release through a blowdown of the primary system after the SG dryouts. During the second phase, some physical phenomena of the change over a pressurizer function, i.e., the pressurizer being full before the POSRV $1^{st}$ opening and then its function being taken by the RV, and the termination of normal natural circulation flow were identified. Finally, a core heatup occurred at a low core water level, although under a significant amount of PZR inventory, whose drainage seemed to be hindered owing to the pressurizer function by the RV. The transient of SBO-01 is well reproduced in the calculation using the MARS code.

열원 냉각용 루프 써모사이폰의 작동 특성 (Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling)

  • 최두성;송태호
    • 대한기계학회논문집B
    • /
    • 제28권12호
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.