• Title/Summary/Keyword: Two-Parameter Elastic Foundation

Search Result 118, Processing Time 0.03 seconds

Vibration analysis of embedded size dependent FG nanobeams based on third-order shear deformation beam theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.721-736
    • /
    • 2017
  • In this paper, free vibration characteristics of functionally graded (FG) nanobeams embedded on elastic medium are investigated based on third order shear deformation (Reddy) beam theory by presenting a Navier type solution for the first time. The material properties of FG nanobeam are assumed to vary gradually along the thickness and are estimated through the power-law and Mori-Tanaka models. A two parameters elastic foundation including the linear Winkler springs along with the Pasternak shear layer is in contact with beam. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on third order shear deformation beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The obtained results are presented for the vibration analysis of the FG nanobeams such as the influences of foundation parameters, gradient index, nonlocal parameter and slenderness ratio in detail.

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Rabczuk, Timon
    • Advances in nano research
    • /
    • v.7 no.5
    • /
    • pp.293-310
    • /
    • 2019
  • In this paper, thermal-buckling behavior of the functionally graded (FG) nanocomposite plates reinforced with graphene oxide powder (GOP) is studied under three types of thermal loading once the plate is supposed to be rested on a two-parameter elastic foundation. The effective material properties of the nanocomposite plate are considered to be graded continuously through the thickness according to the Halpin-Tsai micromechanical scheme. Four types of GOPs' distribution namely uniform (U), X, V and O, are considered in a comparative way in order to find out the most efficient model of GOPs' distribution for the purpose of improving the stability limit of the structure. The governing equations of the plate have been derived based on a refined higher-order shear deformation plate theory incorporated with Hamilton's principle and solved analytically via Navier's solution for a simply supported GOP reinforced (GOPR) nanocomposite plate. Some new results are obtained by applying different thermal loadings to the plate according to the GOPs' negative coefficient of thermal expansion and considering both Winkler-type and Pasternak-type foundation models. Besides, detailed parametric studies have been carried out to reveal the influences of the different types of thermal loading, weight fraction of GOP, aspect and length-to-thickness ratios, distribution type, elastic foundation constants and so on, on the critical buckling load of nanocomposite plates. Moreover, the effects of thermal loadings with various types of temperature rise are investigated comparatively according to the graphical results. It is explicitly shown that the buckling behavior of an FG nanocomposite plate is significantly influenced by these effects.

Flexoelectric effect on buckling and vibration behaviors of piezoelectric nano-plates using a new deformation plate theory

  • Bui Van Tuyen;Du Dinh Nguyen;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.709-725
    • /
    • 2023
  • This paper uses a new type of deformation theory to establish the free vibration and static buckling equations of nanoplates resting on two-parameter elastic foundations, in which the flexoelectric effect is taken into account. The proposed approach used in this work is not only simpler than other higher-order shear deformation theories but also does not need any shear correction coefficients to describe exactly the mechanical responses of structures. The reliability of the theory is verified by comparing the numerical results of this work with those of analytical solutions. The results show that the flexoelectric effect significantly changes the natural frequency and the critical buckling load of the nanoplate compared with the case of neglecting this effect, especially when the plate thickness changes and with some different boundary conditions. These are new results that have not been mentioned in any publications but are meaningful in engineering practice.

Vibration Characteristics of Tapered Piles Embedded in an Elastic Medium (탄성매체에 근입된 변단면 말뚝의 진동 특성)

  • Oh, Sang-Jin;Kang, Hee-Jong;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.832-835
    • /
    • 2005
  • The free vibration of tapered piles embedded in soil is investigated. The pile model is based on the Bernoulli-Euler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equations for the free vibrations of such members are solved numerically. The square tapered piles with one free and the other hinged end with rotational spring are applied in numerical examples. The lowest two natural frequencies are obtained over a range of non-dimensional system parameters: the rotational spring parameter, the embedded ratio, the foundation parameter, the width ratio of the contact area and the section ratio.

  • PDF

Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory

  • Mehrez, Sadok;Karati, Saeed Ali;DolatAbadi, Parnia Taheri;Shah, S.N.R.;Azam, Sikander;Khorami, Majid;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.221-235
    • /
    • 2020
  • The following composition establishes a nonlocal strain gradient plate model that is essentially related to mass sensors laying on Winkler-Pasternak medium for the vibrational analysis from graphene sheets. To achieve a seemingly accurate study of graphene sheets, the posited theorem actually accommodates two parameters of scale in relation to the gradient of the strain as well as non-local results. Model graphene sheets are known to have double variant shear deformation plate theory without factors from shear correction. By using the principle of Hamilton, to acquire the governing equations of a non-local strain gradient graphene layer on an elastic substrate, Galerkin's method is therefore used to explicate the equations that govern various partition conditions. The influence of diverse factors like the magnetic field as well as the elastic foundation on graphene sheet's vibration characteristics, the number of nanoparticles, nonlocal parameter, nanoparticle mass as well as the length scale parameter had been evaluated.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers

  • Feng, Hongwei;Shen, Daoming;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.711-731
    • /
    • 2020
  • This paper deals with free vibration of FG sandwich annular sector plates on Pasternak elastic foundation with different boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. The influence of carbon nanotubes (CNTs) waviness, aspect ratio, internal pores and graphene platelets (GPLs) on the vibrational behavior of functionally graded nanocomposite sandwich plates is investigated in this research work. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness of upper and bottom layers of the sandwich sectorial plates and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The core of structure is porous and the internal pores and graphene platelets (GPLs) are distributed in the matrix of core either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. A semi-analytic approach composed of 2D-Generalized Differential Quadrature Method (2D-GDQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The new results can be used as benchmark solutions for future researches.

A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams

  • Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.213-223
    • /
    • 2019
  • For the first time, longitudinal and transverse wave propagation of triclinic nanobeam is investigated via a size-dependent shear deformation theory including stretching effect. Furthermore, the influence of initial stress is studied. To consider the size-dependent effects, the nonlocal strain gradient theory is used in which two small scale parameters predict the behavior of wave propagation more accurately. The Hamiltonian principle is adopted to obtain the governing equations of wave motion, then an analytic technique is applied to solve the problem. It is demonstrated that the wave characteristics of the nanobeam rely on the wave number, nonlocal parameter, strain gradient parameter, initial stress, and elastic foundation. From this paper, it is concluded that the results of wave dispersion in isotropic and anisotropic nanobeams are almost the same in the presented case study. So, in this case, triclinic nanobeam can be approximated with isotropic model.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.