• Title/Summary/Keyword: Two-Layer Soil Structure

Search Result 75, Processing Time 0.025 seconds

Fast analytical estimation of the influence zone depth, its numerical verification and FEM accuracy testing

  • Kuklik, Pavel;Broucek, Miroslav;Kopackova, Marie
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.635-647
    • /
    • 2009
  • For the calculation of foundation settlement it is recommended to take into account so called influence zone inside the subsoil bellow the foundation structure. Influence zone inside the subsoil is the region where the load has a substantial influence on the deformation of the soil skeleton. The soil skeleton is pre-consolidated or over consolidated due to the original geostatic stress state. An excavation changes the original geostatic stress state and it creates the space for the load transferred from upper structure. The theory of elastic layer in Westergard manner is selected for the vertical stress calculation. The depth of influence zone is calculated from the equality of the original geostatic stress and the new geostatic stress due to excavation combined with the vertical stress from the upper structure. Two close formulas are presented for the influence zone calculation. Using ADINA code we carried out several numerical examples to verify the proposed analytical formulas and to enhance their use in civil engineering practice. Otherwise, the FEM code accuracy can be control.

Effects of Soil Aggregate Stability and Wettability on Soil Loss (토양입단(土壤粒團)의 안정성(安定性)과 친수성(親水性)이 토양유실(土壤流失)에 미치는 영향(影響))

  • Jo, In-Sang;Cho, Seong-Jin;De Boodt, M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.373-377
    • /
    • 1985
  • This experiment was designed to find out the soil properties to control the soil erodibility. Two kinds of soil conditioners, hydrophilic Uresol and hydrophobic Bitumen were treated to sandy loam and silt loam. Soil erodibility was tested during a simulated rainfall in a soil pan which was covered with a 2cm layer of treated and untreated aggregates (< 5.36mm) on a soil layer. The runoff starting time was delayed 8-20 minutes by Uresol treatment and it was hasten 1-21 minutes by Bitumen treatment. Runoff rates were reduced by Uresol to 62.5% in sandy loam and 93.7% in silt loam, but it was increased by Bitumen treatment. Erosion from the Uresol treated soil was remarkably reduced to 1.7-23.6% of that in the untreated soil. In case of the Bitumen treatment, the soil loss from silt loam was reduced to 55.5% of the control, but it was increased in sandy loam soil by 52% over the control. The ratio of soil loss and runoff, sediment concentration in runoff, was noticeably increased when the soil structure was unstable. There was significant correlation between soil loss and logarithm of wetting angle-stability index. Soil loss was greatly increased when the index was less than 0.2.

  • PDF

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

A comparative study on the behavior of dynamic analysis and pseudo-static analysis considering SSI of a tall building and an adjacent underground structure (초고층 빌딩과 인접 지하구조물의 SSI를 고려한 동적해석과 유사정적해석의 거동 비교 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.671-686
    • /
    • 2018
  • Recently, earthquakes have occurred near Gyeongju and Pohang and the social demands are thus being increased for seismic analysis of tall buildings and their adjacent underground structure in big cities. Since most of the previous seismic analysis studies considered a tall building and an adjacent underground structure separately, however, they lack the analysis on dynamic mutual behavior between two structures. Therefore, in this study, a dynamic analysis with a full soil-structure interaction was performed for a complex underground facility with a tall building and an adjacent underground structure constructed on the bedrock with a surface layer. To improve the reliability, in particular, a pseudo-static analysis was performed and compared with the dynamic analysis results. It is comprehensively concluded that the analysis of adjacent underground structures being considered is more conservative than that of not considered.

Effect of micro-environment in ridge and southern slope on soil respiration in Quercus mongolica forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • Background: Soil respiration (Rs) is a major factor of the absorption and accumulation of carbon through photosynthesis in the ecosystem carbon cycle. This directly affects the amount of net ecosystem productivity, which affects the stability and sustainability of the ecosystem. Understanding the characteristics of Rs is indispensable to scientifically understand the carbon cycle of ecosystems. It is very important to study Rs characteristics through analysis of environmental factors closely related to Rs. Rs is affected by various environmental factors, such as temperature, precipitation, soil moisture, litter supply, organic matter content, dominant plant species, and soil disturbance. This study was conducted to analyze the effects of micro-topographical differences on Rs in forest vegetation by measuring the Rs on the ridge and southern slope sites of the broadly established Quercus mongolica forest in the central Korean area. Method: Rs, Ts, and soil moisture data were collected at the southern slope and ridge of the Q. mongolica forest in the Mt. Jeombong area in order to investigate the effects of topographical differences on Rs. Rs was collected by the closed chamber method, and data collection was performed from May 2011 to October 2013, except Winter seasons from November to April or May. For collecting the raw data of Rs in the field, acrylic collars were placed at the ridge and southern slope of the forest. The accumulated surface litter and the soil organic matter content (SOMC) were measured to a 5 cm depth. Based on these data, the Rs characteristics of the slope and ridge were analyzed. Results: Rs showed a distinct seasonal variation pattern in both the ridge and southern slope sites. In addition, Rs showed a distinct seasonal variation with high and low Ts changes. The average Rs measurements for the two sites, except for the Winter periods that were not measured, were $550.1\;mg\;CO_2m^{-2}h^{-1}$ at the ridge site and $289.4\;mg\;CO_2m^{-2}h^{-1}$ at the southern slope, a difference of 52.6%. There was no significant difference in the Rs difference between slopes except for the first half of 2013, and both sites showed a tendency to increase exponentially as Ts increased. In addition, although the correlation is low, the difference in Rs between sites tended to increase as Ts increased. SMC showed a large fluctuation at the southern slope site relative to the ridge site, as while it was very low in 2013, it was high in 2011 and 2012. The accumulated litter of the soil surface and the SOMC at the depth range of 0~5 cm were $874g\;m^{-2}$ and 23.3% at the ridge site, and $396g\;m^{-2}$ and 19.9% at the southern slope site. Conclusions: In this study, Rs was measured for the ridge and southern slope sites, which have two different results where the surface litter layer is disturbed by strong winds. The southern slope site shows that the litter layer formed in autumn due to strong winds almost disappeared, and while in the ridge site, it became thick due to the transfer of litter from the southern slope site. The mean Rs was about two times higher in the ridge site compared to that in the southern slope site. The Rs difference seems to be due to the difference in the amount of litter accumulated on the soil surface. As a result, the litter layer supplied to the soil surface is disturbed due to the micro-topographical difference, as the slope and the change of the community structure due to the plant season cause heterogeneity of the litter layer development, which in turn affects SMC and Rs. Therefore, it is necessary to introduce and understand these micro-topographical features and mechanisms when quantifying and analyzing the Rs of an ecosystem.

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

SSI Effects on the Dynamic Response of Structures (구조물-지반 상호작용이 구조물의 동적거동에 미치는 영향)

  • 김용석
    • Computational Structural Engineering
    • /
    • v.6 no.2
    • /
    • pp.87-93
    • /
    • 1993
  • Recently it is recognized that the effects of structure-soil interaction(SSI) on the response of structures are important in the dynamic analysis of structures. In this study, theoretical and experimental investigations were performed to study the SSI effects(mainly inertial interaction) on the dynamic response of buildings utilizing the finite element foumulation. Theoretical studies were performed with two idealized buildings(stubby one and slender one) built on the homogeneous soil layer and having the small embedment ratio. Experimental investigations were also carried out for two buildings built on the pile foundation in Mexico City, experienced the 1985 Earthquake. The results of this study show that the SSI effects are significant on the response of structures due to the change of fundamental frequency and effective damping ratio, and that it is necessary to include the SSI effects on the dynamic analysis of structures.

  • PDF

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.