• Title/Summary/Keyword: Two-Dimensional Analysis

Search Result 4,952, Processing Time 0.033 seconds

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

Various types of analyses for two-dimensional data (2차원 데이터의 여러 가지 분석방법)

  • Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.10 no.4
    • /
    • pp.251-263
    • /
    • 2010
  • Modelling for failures is important for reliability analysis since failures of products such as automobiles occur as both time and usage progress and the results from the proper analysis of the two-dimensional data can be used for establishing warranty assurance policy. Hence, in this paper general issues which concern modelling failures are discussed, and both one-dimensional approaches and two-dimensional approaches to two-dimensional data are investigated. Finally non-parametric approaches to two-dimensional data are presented as a means of exploratory data analyses.

Performance Analysis of the Rectangular Fin (사각 휜에 대한 성능해석)

  • Gang, Hyeong-Seok;Yun, Se-Chang;Lee, Seong-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Performance of a rectangular fin is investigated by a three dimensional analytical method. Heat loss and the temperature obtained from the three dimensional analysis are compared with those calculated from a two dimensional analysis. Fin effectiveness, fin resistance and fin efficiency for the rectangular fin are presented as a function of non-dimensional fin length and fin width. The results are obtained in the following : (1) heat loss calculated from the two dimensional analysis is the same as that obtained from the three dimensional analysis with adiabatic boundary condition in z-direction, (2) heat loss obtained from the two dimensional analysis approaches the value for the three dimensional analysis as the non-dimensional fin width becomes large, (3) fin effectiveness increases as non-dimensional fin length increases and non-dimensional fin width decreases, and vice versa for fin efficiency.

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

Warranty Cost Models for a Product with a Two-Dimensional Warranty Policy (이차원 보증정책을 갖는 제품의 보증비용 모형)

  • ;D.N.P Murthy
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.1
    • /
    • pp.57-77
    • /
    • 2000
  • A two-dimensional warranty policy, two types of warranty criteria, such as the age and mileage of an automobile, are employed simultaneously to determine the eligibility of a warranty claim. We deal with the analysis of a variety of combined two-dimensional free replacement warranty(FRW) and pro-rata replacement warranty(PRW). In this paper we also propose the analysis of policies with item failures modelled using the one-dimensional and two-dimensional approach, respectively. We obtain expressions for the expected warranty costs and illustrate through numerical examples.

  • PDF

Block Deformation Analysis Using Three-dimensional Discontinuous Deformation Analysis(DDA) (삼차원 불연속 변형 해석(DDA)을 이용한 블록거동해석)

  • 장현익;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.158-170
    • /
    • 2002
  • Since the development of Discontinuous Deformation Analysis (DDA) by Shi (1984), there has been much improvement in the theory and programs. These, however, are all based on the assumption of a two-dimensional plane strain or plane stress state; and because a rock block system is a three-dimensional problem, a two-dimensional analysis has limited application. So a three-dimensional analysis is required in the design of rock slopes and underground spaces where three-dimensional discontinuities dominate stability. In this study three-dimensional DDA program is developed using the Shi's two-dimensional theory and program, and the two cases of three-dimensional block are analysed. The program is applied to one sliding-face blocks and wedge sliding and it gives the good results comparing to the exact solution. Multi-block cases will be analysed for many other application soon.

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

A Study tor 2-Dimensional Analysis Technique for 3-Dimensional Ground Behaviour Due to Tunneling (터널 굴진시의 3차원 지반거동의 2차원적 해석법 고찰)

  • 김교원;이현범
    • The Journal of Engineering Geology
    • /
    • v.6 no.3
    • /
    • pp.111-118
    • /
    • 1996
  • In general, a three dimensional ground behaviour during tunneling is simulated by using two dimensional analysis programs in consideration of a certain ratio of stress or strain distribution to take into account the effect of construction stage by a tunnel face advance. A series of trree dimensional analyses was conducted to deduce a normalized displacement (surface or crown settlement) curve in longitudinal direction, of which curve is reflecting an effect of a tunnel advance under a various condition. And, by using try and error technique, two dimensional analyses were carried out to determine an optimum stress distribution ratio for a settiement curve coincided with the curve obtained by three dimensional analyses. Finally, monitored results from a subway tunnel were compared with two dimensional analysis results for varification of the deduced stress distribution ratio as well as the two dimensional analysis program employed in this study.

  • PDF

Analysis of the J-integral for Two-dimensional and Three-dimensional Crack Configurations in Welds of Steel Structure (강구조물 응접접합부의 2차원 및 3차원 균열에 대한 J-적분 해석)

  • 이진형;장경호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.270-277
    • /
    • 2004
  • In this paper, path-independent values of the J-integral in the fininte element context for arbitrary two-dimensional and three-dimensional crack configurations in welds are presented. For the fracture mechanics analysis of cracks in welds, residual stress analysis and fracture analysis must be performed simultaneously. In the analysis of cracked bodies containing residual stress, the usual domain integral formulation results in path-dependent values of the J-integral. This paper discusses modifications of the conventional J-integral that yield path independence in the presence of residual stress generated by welding. The residual stress problem is treated as an initial strain problem and the J-integral modified for this class of problem is used. And a finite element program which can evaluate the J-integral for cracks in two-dimensional and three-dimensional residual stress bearing bodies is developed using the modified J-integral definition. The situation when residual stress only is present is examed as is the case when mechanical stresses are applied in conjunction with a residual stress field.

  • PDF