• Title/Summary/Keyword: Two-Dimension Face Image

Search Result 20, Processing Time 0.027 seconds

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition (3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계)

  • Oh, Sung-Kwun;Oh, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

A Study on Face Image Recognition Using Feature Vectors (특징벡터를 사용한 얼굴 영상 인식 연구)

  • Kim Jin-Sook;Kang Jin-Sook;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.897-904
    • /
    • 2005
  • Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.

Face Recognition using Wavelet Transform and 2D PCA (웨이브릿 변환과 2D PCA를 이용한 얼굴 인식)

  • Kim, Young-Gil;Song, Young-Jun;Chang, Un-Dong;Kim, Dong-Woo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.348-351
    • /
    • 2004
  • In this paper, we propose the face recognition method using Harr wavelet transform and 2D PCA. While previous PCA computed the covariance matrix by using one dimensional vectors, 2D PCA computed the covarinace matrix by using direct two dimensional image and extracted feature vector by solving eigenvalue problem. To gain the face image having the low dimension and robust property, the proposed method uses wavelet transformation. We apply the LL band image data to 2D PCA for face recognition. The experimental results indicate that our method improves recognition rate than 2D PCA into original image.

  • PDF

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

Design of Optimized pRBFNNs-based Face Recognition Algorithm Using Two-dimensional Image and ASM Algorithm (최적 pRBFNNs 패턴분류기 기반 2차원 영상과 ASM 알고리즘을 이용한 얼굴인식 알고리즘 설계)

  • Oh, Sung-Kwun;Ma, Chang-Min;Yoo, Sung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.749-754
    • /
    • 2011
  • In this study, we propose the design of optimized pRBFNNs-based face recognition system using two-dimensional Image and ASM algorithm. usually the existing 2 dimensional face recognition methods have the effects of the scale change of the image, position variation or the backgrounds of an image. In this paper, the face region information obtained from the detected face region is used for the compensation of these defects. In this paper, we use a CCD camera to obtain a picture frame directly. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. AdaBoost algorithm is used for the detection of face image between face and non-face image area. We can butt up personal profile by extracting the both face contour and shape using ASM(Active Shape Model) and then reduce dimension of image data using PCA. The proposed pRBFNNs consists of three functional modules such as the condition part, the conclusion part, and the inference part. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of RBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to real-time face image database and then demonstrated from viewpoint of the output performance and recognition rate.

A Study Vector Image Transformation of Personal Feature And Image Interpolation (2차원 얼굴외곽 정보의 VECTOR IMAGE 변환과 효과적인 영상복원에 관한 연구)

  • Jo, Nam-Chul
    • Journal of the Korea society of information convergence
    • /
    • v.1 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Video camera play very important roles for preventing many kinds of crimes and resolving those crime affairs. But in the case of recording image of a specific person far from the CCTV, the original image needs to be enlarged and recovered in order to identify the person more obviously. Interpolation is usually used for the enlargement and recovery of the image in this case. However, it has a certain limitation. As the magnification of enlargement is getting bigger, the quality of the original image can be worse. This paper uses FOP(Facial Definition Parameter) proposed by the MPEG-4 SNHC FBA group and introduces a new algorithm that uses face outline information of the original image based on the FOP, which makes it possible to recover better than the known methods until now.

  • PDF

Design of Three-dimensional Face Recognition System Using Optimized PRBFNNs and PCA : Comparative Analysis of Evolutionary Algorithms (최적화된 PRBFNNs 패턴분류기와 PCA알고리즘을 이용한 3차원 얼굴인식 알고리즘 설계 : 진화 알고리즘의 비교 해석)

  • Oh, Sung-Kwun;Oh, Seung-Hun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • In this paper, we was designed three-dimensional face recognition algorithm using polynomial based RBFNNs and proposed method to calculate the recognition performance. In case of two-dimensional face recognition, the recognition performance is reduced by the external environment like facial pose and lighting. In order to compensate for these shortcomings, we perform face recognition by obtaining three-dimensional images. obtain face image using three-dimension scanner before the face recognition and obtain the front facial form using pose-compensation. And the depth value of the face is extracting using Point Signature method. The extracted data as high-dimensional data may cause problems in accompany the training and recognition. so use dimension reduction data using PCA algorithm. accompany parameter optimization using optimization algorithm for effective training. Each recognition performance confirm using PSO, DE, GA algorithm.

Development of Facial Palsy Grading System with Three Dimensional Image Processing (3차원 영상처리를 이용한 안면마비 평가시스템 개발)

  • Jang, M.;Shin, S.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • The objective grading system for the facial palsy is needed. In this study, the facial palsy grading system was developed with combination of three dimensional image processing and Nottingham scale. The developed system is composed of 4 parts; measurement part, image processing part, computational part, facial palsy evaluation & display part. Two web cam were used to get images. The 8 marker on face were recognized at image processing part. The absolute three dimensional positions of markers were calculated at computational part. Finally, Nottingham scale was calculated and displayed at facial palsy evaluation & display part. The effects of measurement method and position of subject on Nottingham scale were tested. The markers were measured with 2-dimension and 3-dimension. The subject was look at the camera with $0^{\circ}$ and $11^{\circ}$ rotation. The change of Scale was large in the case of $11^{\circ}$ rotation with 2-dimension measurement. So, the developed system with 3-dimension measurement is robust to the orientation change of subject. The developed system showed the robustness of grading error originated from subject posture.

  • PDF

Automatic Estimation of 2D Facial Muscle Parameter Using Neural Network (신경회로망을 이용한 2D 얼굴근육 파라메터의 자동인식)

  • 김동수;남기환;한준희;배철수;권오홍;나상동
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.33-38
    • /
    • 1999
  • Muscle based face image synthesis is one of the most realistic approach to realize life-like agent in computer. Facial muscle model is composed of facial tissue elements and muscles. In this model, forces are calculated effecting facial tissue element by contraction of each muscle strength, so the combination of each muscle parameter decide a specific facial expression. Now each muscle parameter is decided on trial and error procedure comparing the sample photograph and generated image using our Muscle-Editor to generate a specific race image. In this paper, we propose the strategy of automatic estimation of facial muscle parameters from 2D marker movement using neural network. This also 3D motion estimation from 2D point or flow information in captered image under restriction of physics based fare model.

  • PDF