• Title/Summary/Keyword: Two parameter on-off control

Search Result 24, Processing Time 0.024 seconds

An Experimental Study on Two Parameter Control for Radiant Floor Heating System

  • Cho, Sung-Hwan;Tae, Choon-Seob;Jang, Chel-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.136-147
    • /
    • 1998
  • An experimental facility consisting of two 3$\times$4.4$\times$2.8m rooms identical in construction is built. Each room has a control system and storage tank supplying hot water to the radiant floor heating system. The facility enables simultaneous comparison of two different control strategies each implemented in a separate room. The operating performance of three kinds of flow control scheme is tested and compared in this study: (ⅰ) conventional on-off control based on feedback from room air temperature (ⅱ) TPSC(two parameter switching control )(ⅲ) TPOC(two parameter on-off control). Results show that TPSC and TPOC using room air and surface temperature sequentially as feedback signal to control hot water supply is the better temperature regulation scheme than conventional control based on feedback from only room air temperature. They are good candidates for the room with radiant floor heating system under continuous and intermittent heating mode.

  • PDF

An experimental study on the multiple parameter switching control for floor heating system (바닥 난방공간의 다인자 제어에 관한 실험적 연구)

  • Cho, S.H.;Tae, C.S.;Jang, C.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.472-483
    • /
    • 1997
  • An experimental facility consisting of two $3{\times}4.4{\times}3.8m$ rooms identical in construction is built. Each room has a control system and storage tank supplying hot water to the radiant floor heating system. The facility enables simultaneous comparision of two different control stratigies each implemented in a separate room. The operating performance of three kinds of flow control scheme is tested and compared in this study : (i) conventional on-off control based on feedback from room air temperature (ii) TPSC(two parameter switching control) (iii) TPOC(two parameter on-off control). Results show that TPSC and TPOC using room air and surface temperature sequentially as feedback signal to control hot water supply is the better temperature regulation scheme than conventional control based on feedback from only room air temperature. They are good candidates for the room with radiant floor heating system under continuous and intermittent heating mode.

  • PDF

The Effective Heating Control Method of the Radiant Floor Heating System (바닥복사 난방공간의 효율적인 난방제어방법)

  • Cho, S.H.;Tae, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.317-329
    • /
    • 1996
  • By describing the floor slab of a radiant heating system as a one dimensional transient heat exchanger problem, a dynamic analysis model to incorperate with TRNSYS program was developed and their results were compared with experimental results. Results showed that the both of TPOC(Two Parameter On-off Control) and TPSC(Two Parameter Switching Control) method using room air temperature and floor surface temperature as the control parameters does not maintain room air and floor surface temperature exactly at the setting temperatures. But TPSC method is a better candidate for the temperature regulations of room air and floor surface temperature than TPOC method which can keep on the upper and lower limit temperature according to outside temeperature and wall structure etc. And better thermal circumstance can be given by TPSC method than On-off and TPOC method and the overheating which can be occured at the radiant floor heating system with on-off heating control will be reduced.

  • PDF

The Performance Improvement of an Efficient Usage Parameter Control Algorithm in ATM Networks (ATM망에서의 효율적인 UPC 알고리즘의 성능 개선)

  • Park, Sung-Kon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.12
    • /
    • pp.3150-3158
    • /
    • 1997
  • In the ATM networks, there are two method in traffic control as schemes to improve the quality of service; one is the reactive control after congestion and the other is the preventive control before congestion. The preventive control include the CAC(Connection Admission Control), the UPC(Usage Parameter Control), the NPC(Network Parameter Control) and the PC(Priority co ntrol). In this paper, we propose an efficient UPC algorithm that has a complex structure using the Jumping window algorithm within the Leaky Bucket algorithm. The proposed algorithm controls peak hit rate by the Leaky Bucket algorithm, then it does the traffic control to evaluate by the Jumping Window whether violates mean bit rate or not. As we assume On/Off traffic source model, our simulation results showed cell loss rate less than the pre-existential Leaky Bucket algorithm method, and it could decrease the demanded Bucket size.

  • PDF

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

Design of Sliding Mode Controller with New Perturbation Estimator (새로운 섭동 추정기를 갖는 슬라이딩 모드 제어기의 설계)

  • Ham, Joon-Ho;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.782-787
    • /
    • 2004
  • In the conventional sliding mode control technique, a priori knowledge of the bound of external disturbances or/and parameter uncertainties is required to assure control robustness. This, however, may not be easy to obtain in practical situation. This work presents a novel methodology, a sliding mode controller with perturbation estimator, which offers a robust control performance without a priori knowledge about the perturbations (disturbances and parameter uncertainties). The proposed technique is featured by an integrated average value of the imposed perturbation over a certain sampling period. This work also proposes two effective actuating methods of the perturbation estimator: on-off condition and filtering condition. In order to demonstrate the effectiveness of the proposed methodology, a two-link robotic system is adopted and its position control performance is evaluated. In addition, a comparative work between the conventional technique and the proposed one is undertaken.

  • PDF

A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves (고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

Control of Short-Channel Effects in Nano DG MOSFET Using Gaussian-Channel Doping Profile

  • Charmi, Morteza
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.270-274
    • /
    • 2016
  • This article investigates the use of the Gaussian-channel doping profile for the control of the short-channel effects in the double-gate MOSFET whereby a two-dimensional (2D) quantum simulation was used. The simulations were completed through a self-consistent solving of the 2D Poisson equation and the Schrodinger equation within the non-equilibrium Green’s function (NEGF) formalism. The impacts of the p-type-channel Gaussian-doping profile parameters such as the peak doping concentration and the straggle parameter were studied in terms of the drain current, on-current, off-current, sub-threshold swing (SS), and drain-induced barrier lowering (DIBL). The simulation results show that the short-channel effects were improved in correspondence with incremental changes of the straggle parameter and the peak doping concentration.

Compensatory cylindricity control of the C.N.C. turing process (컴퓨터 수치제어 선반에서의 진원통도 보상제어)

  • 강민식;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.694-704
    • /
    • 1988
  • A recursive parameter estimation scheme utilizing the variance perturbation method is applied to the workpiece deflection model during CNC turning process, in order to improve the cylindricity of slender workpiece. It features that it is based on exponentially weighted recursive least squares method with post-process measurement of finish surfaces at two locations and it does not require a priori knowledge on the time varying deflection model parameter. The measurements of finish surfaces by using two proximity sensors mounted face to face enable one to identify the straightness, guide-way, run-out eccentricity errors. Preliminary cutting tests show that the straightness error of the finish surface due to workpiece deflection during cutting is most dominant. Identifying the errors and recursive updating the parameter, the off-line control is carried out to compensate the workpiece deflection error, through single pass cutting. Experimental results show that the proposed method is superior to the conventional multi-pass cutting and the direct compensation control in cutting accuracy and efficiency.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.