• Title/Summary/Keyword: Two Port Feeding Structure

Search Result 7, Processing Time 0.017 seconds

A High-Isolation MIMO Antenna with Dual-Port Structure for 5G Mobile Phones

  • Yang, Hyung-kyu;Lee, Won-Woo;Rhee, Byung-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1458-1470
    • /
    • 2018
  • In this letter, a new dual-port Multiple-Input Multiple-Output (MIMO) antenna is introduced which has two independent signal feeding ports in a single antenna element to achieve smaller antenna volumes for the 5G mobile applications. The dual-port structure is implemented by adding a cross coupled semi-loop (CCSL) antenna as the secondary radiator to the ground short of inverted-F antenna (IFA). It is found that the port to port isolation is not deteriorated when an IFA and CCSL is combined to form a dual-port structure. The isolation property of the proposed antenna is compared with a polarization diversity based dual-port antenna proposed in the literature [9]. The operating frequency range is 3.3-4.0 GHz which is suitable for places where $4{\times}4$ MIMO systems are supposed to be deployed such as in China, EU, Korea and Japan at the band ${\times}$ (3.3 - 3.8GHz. The measured 6-dB impedance bandwidths of the proposed antennas are larger than 700 MHz with isolation between the feeding ports higher than 18 dB [1-2]. The simulation and measurement results show that the proposed antenna concept is a very promising alternative for 5G mobile applications.

Design and Fabrication of Dual Linear Polarization Patch Antenna with Aperture Coupled Feeding Structure (개구 결합 급전 구조를 갖는 이중 선형편파 패치 안테나의 설계 및 제작)

  • Joong-Han Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1015-1022
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) antenna with aperture coupled feeding structure for private network. The proposed antenna has general aperture coupled structure and design two port between top and bottom layer to obtain the enhanced isolation. Also, The size of each substrate(top and bottom layer) is 34.0 mm(W)×34.0 mm(L), which is designed on the FR-4 substrate which thickness (h) is 1.0 mm, and the dielectric constant is 4.4. Also, the size of patch antenna is 12.70 mm(W2)×14.60 mm(L3), and it is located on the top layer. The size of feeding line is 24.0 mm(W2)×1.6 mm(L3), and is located at the bottom layer Also, rectangular slot is located on the ground plane between top layer and bottom layer. From the fabrication and measurement results, bandwidths of 300 MHz (4.52 to 4.82 GHz) for feeding port 1, and 170 MHz (4.65 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -30 dB. Also, cross polarization isolation between each feeding port obtained

Design and Fabrication of Dual Linear Polarization Stack Antenna for 4.7GHz Frequency Band (4.7 GHz 대역에서 동작하는 이중 선형편파 적층 안테나의 설계 및 제작)

  • Joong-Han Yoon;Chan-Se Yu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.251-258
    • /
    • 2023
  • In this paper, we propose DLP(Dual Linear Polarization) stack antenna for private network. The proposed antenna has general stack structure and design airgap between two substrate to obtain the maximum gain. Also, to improve cross polarization isolation, two feeding port is designed to separate for each substrate. The size of each patch antenna is 17.80 mm(W1)×16.70 mm(L1) for lower patch and 18.56 mm(W2)×18.73 mm(L2) for upper patch, which is designed on the FR-4 substrate which thickness (h) is 1.6 mm, and the dielectric constant is 4.3, and which is 40.0 mm(W)×40.0 mm(L) for total size of substrate. From the fabrication and measurement results, bandwidths of 100 MHz (4.74 to 4.84 GHz) for feeding port 1, and 150 MHz (4.67 to 4.82 GHz) for feeding port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is got under the -20 dB. Also, cross polarization isolation between each feeding port obtained

A Study on 8 × 4 Dual-Polarized Array Antenna for X-Band Using LTCC-Based ME Dipole Antenna Structure (LTCC 기반 ME Dipole 안테나 구조를 활용한 X-Band 용 8 × 4 이중편파 배열안테나에 관한 연구)

  • Jung, Jae-Woong;Seo, Deokjin;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.25-32
    • /
    • 2021
  • In this paper, the Magneto-Electric(ME) dipole array antenna with dual-polarization in the X-Band is proposed and it is implemented and measured. The proposed array antenna is composed of 32 single ME dipole antenna and a Teflon PCB. 1 × 1 ME dipole antenna is implemented dual-polarization by radiating vertical polarization and horizontal polarization from two pairs of radiators. 2-port feeding structures are realized by lamination process using LTCC. And, each port independently feeds the radiator through a Γ-shaped feeding strip with isolation between ports. The Teflon PCB used in the antenna array has a 4-layer structure, and 2-port is fed through the top and bottom layers. The λg/4 transformer is applied to the transmission line of the Teflon PCB for impedance matching of the arrayed antenna and the Teflon PCB, and the optimal parameters are obtained through simulation. The measured maximum antenna gains of port 1 was 18.2 dBi, Cross-pol was 1.0 dBi. And the measured maximum antenna gains of port 1 was 18.1 dBi, Cross-pol was 3.2 dBi.

Design and Fabrication of DLP Array Antenna for 3.5 GHz Band (3.5 GHz 대역에서 동작하는 DLP 배열 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1037-1044
    • /
    • 2021
  • In this paper, we propose DLP(Dual Linear Polarization) array antenna for 3.5 GHz band. The proposed antenna has 1×4 array antenna and design two port network. A cross shape is inserted at the bottom of the patch for impedance matching. The size of each patch antenna is 18.85 mm(W1)×18.85 mm(L1), array antenna is designed on the FR-4 substrate, which is 236.0 mm(W)×60.2 mm(L), thickness (h) 1.6 mm, and the dielectric constant is 4.3. From the fabrication and measurement results, bandwidths of 70 MHz (3.54 to 3.61 GHz) for input port 1, 75 MHz (3.55 to 3.625 GHz) for input port 2 are obtained on the basis of -10 dB return loss and transmission coefficient S21 is under the -20 dB. Also, cross polarization between two port obtained.

Design and Fabrication of Dual Linear Polarization Antenna for mmWave Application using FR-4 Substrate

  • Choi, Tea-Il;Yoon, Joong-Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.71-77
    • /
    • 2022
  • In this paper, we propose 1×2 array antenna with dual linear polarization characteristics for mmWave band operation. The proposed antenna is designed two microstirp feeding structure and FR-4 substrate, which is thickness 0.4 mm, and the dielectric constant is 4.3. The size of 1×2 array antenna is 2.33 mm×2.33 mm, and total size of array antenna is 13.0 mm×6.90 mm. From the fabrication and measurement results, bandwidths of 1.13 GHz (28.52~29.65 GHz) for port 1 and 1.08 GHz (28.45~29.53 GHz) for port 2 were obtained based on the impedance bandwidth. Cross polarization ratios are obtained from 7.68 dBi to 16.90 dBi in case of vertical polarization, and from 7.46 dBi to 15.97 dBi in case of horizontal polarization for input port 1, respectively. Also, cross polarization ratios are obtained from 8.59 dBi to 13.72 dBi in case of vertical polarization and from 9.03 dB to 14.0 dB in case of horizontal polarization for input port 2, respectively.

Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band (28 GHz 대역에서 동작하는 이중 선형편파 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose single and array antenna with dual linear polarization characteristics for 28 GHz band. The proposed antenna is designed two microstirp feeding structure and Taconic TLY-5 substrate, which is thickness 0.5 mm, and the dielectric constant is 2.2. The size of single patch antenna is 3.4 mm×3.4 mm, and total size of single antenna is 15.11 mm×15.11 mm. Also, the size of array antenna is 3.15 mm×3.15 mm, and total size of array antenna is 21.5 mm×13.97 mm. From the fabrication and measurement results, for 1×2 array antenna, in case of vertical polarization, cross polarization ratios are obtained from 14.23 dB to 20.79 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.31 dB to 22.74 dB for input port 1. in case of vertical polarization, cross polarization ratios are obtained from 15.75 dB to 25.88 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.70 dB to 22.82 dB for input port 2.