• Title/Summary/Keyword: Two Phase Clustering

Search Result 48, Processing Time 0.022 seconds

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

Energy Efficient Topology Control based on Sociological Cluster in Wireless Sensor Networks

  • Kang, Sang-Wook;Lee, Sang-Bin;Ahn, Sae-Young;An, Sun-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.341-360
    • /
    • 2012
  • The network topology for a wide area sensor network has to support connectivity and a prolonged lifetime for the many applications used within it. The concepts of structure and group in sociology are similar to the concept of cluster in wireless sensor networks. The clustering method is one of the preferred ways to produce a topology for reduced electrical energy consumption. We herein propose a cluster topology method based on sociological structures and concepts. The proposed sociological clustering topology (SOCT) is a method that forms a network in two phases. The first phase, which from a sociological perspective is similar to forming a state within a nation, involves using nodes with large transmission capacity to set up the global area for the cluster. The second phase, which is similar to forming a city inside the state, involves using nodes with small transmission capacity to create regional clusters inside the global cluster to provide connectivity within the network. The experimental results show that the proposed method outperforms other methods in terms of energy efficiency and network lifetime.

Denoising Mapping Utilizing Constellation Symmetry in Denoise-and-Forward Two-Way Relay Channels

  • Zheng, Jianping;Bai, Baoming;Li, Ying
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.617-620
    • /
    • 2012
  • The denoising mapping with the closest-neighbor clustering (CNC) method in denoise-and-forward two-way relay channels is studied. Specifically, the symmetry of the constellations in source terminals A and B is utilized to reduce the complexity of the CNC method. The specific case considered first to illustrate how the constellation symmetry works in the CNC method is the quadrature phase-shift keying constellation in A and B and the single-antenna deployment in all terminals. This case study shows that an enormous complexity reduction can be achieved. Next, the result is extended to multiple-antenna scenarios and square quadrature amplitude modulations.

A Geometrical Center based Two-way Search Heuristic Algorithm for Vehicle Routing Problem with Pickups and Deliveries

  • Shin, Kwang-Cheol
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • The classical vehicle routing problem (VRP) can be extended by including customers who want to send goods to the depot. This type of VRP is called the vehicle routing problem with pickups and deliveries (VRPPD). This study proposes a novel way to solve VRPPD by introducing a two-phase heuristic routing algorithm which consists of a clustering phase and uses the geometrical center of a cluster and route establishment phase by applying a two-way search of each route after applying the TSP algorithm on each route. Experimental results show that the suggested algorithm can generate better initial solutions for more computer-intensive meta-heuristics than other existing methods such as the giant-tour-based partitioning method or the insertion-based method.

A Study on Labeling of ECG Signal using Fuzzy Clustering (퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구)

  • Kong, I.W.;Lee, J.W.;Lee, S.H.;Choi, S.J.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

Phase Behavior of Reversibly Associating Star Copolymer-like Polymer Blends

  • June Huh;Kim, Seung-Hyun;Jo, Won-Ho
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • We theoretically consider blends of two monodisperse one-end-functionalized homopolymers (denoted by A and B) capable of forming clusters between functional groups (stickers) using weak segregation theory. In this model system resulting molecular architectures via clustering resemble star copolymers having many A- and B-arms. Minimizing the total free energy with respect the cluster distribution, the equilibrium distribution of clusters is obtained and used for RPA (Random Phase Approximation) equations as input. For the case that polymers are functionalized by only one kind of sticker, the phase diagrams show that the associations promote the macrophase separation. When there is strong affinity between stickers belonging to the different polymer species, on the other hand, the phase diagram show a suppression of the macrophase separation at the range of high temperature regime, as well as the phase coexistence between a disordered and a mesoscopic phase at the relatively lower temperatures.

Hierarchical Overlapping Clustering to Detect Complex Concepts (중복을 허용한 계층적 클러스터링에 의한 복합 개념 탐지 방법)

  • Hong, Su-Jeong;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.111-125
    • /
    • 2011
  • Clustering is a process of grouping similar or relevant documents into a cluster and assigning a meaningful concept to the cluster. By this process, clustering facilitates fast and correct search for the relevant documents by narrowing down the range of searching only to the collection of documents belonging to related clusters. For effective clustering, techniques are required for identifying similar documents and grouping them into a cluster, and discovering a concept that is most relevant to the cluster. One of the problems often appearing in this context is the detection of a complex concept that overlaps with several simple concepts at the same hierarchical level. Previous clustering methods were unable to identify and represent a complex concept that belongs to several different clusters at the same level in the concept hierarchy, and also could not validate the semantic hierarchical relationship between a complex concept and each of simple concepts. In order to solve these problems, this paper proposes a new clustering method that identifies and represents complex concepts efficiently. We developed the Hierarchical Overlapping Clustering (HOC) algorithm that modified the traditional Agglomerative Hierarchical Clustering algorithm to allow overlapped clusters at the same level in the concept hierarchy. The HOC algorithm represents the clustering result not by a tree but by a lattice to detect complex concepts. We developed a system that employs the HOC algorithm to carry out the goal of complex concept detection. This system operates in three phases; 1) the preprocessing of documents, 2) the clustering using the HOC algorithm, and 3) the validation of semantic hierarchical relationships among the concepts in the lattice obtained as a result of clustering. The preprocessing phase represents the documents as x-y coordinate values in a 2-dimensional space by considering the weights of terms appearing in the documents. First, it goes through some refinement process by applying stopwords removal and stemming to extract index terms. Then, each index term is assigned a TF-IDF weight value and the x-y coordinate value for each document is determined by combining the TF-IDF values of the terms in it. The clustering phase uses the HOC algorithm in which the similarity between the documents is calculated by applying the Euclidean distance method. Initially, a cluster is generated for each document by grouping those documents that are closest to it. Then, the distance between any two clusters is measured, grouping the closest clusters as a new cluster. This process is repeated until the root cluster is generated. In the validation phase, the feature selection method is applied to validate the appropriateness of the cluster concepts built by the HOC algorithm to see if they have meaningful hierarchical relationships. Feature selection is a method of extracting key features from a document by identifying and assigning weight values to important and representative terms in the document. In order to correctly select key features, a method is needed to determine how each term contributes to the class of the document. Among several methods achieving this goal, this paper adopted the $x^2$�� statistics, which measures the dependency degree of a term t to a class c, and represents the relationship between t and c by a numerical value. To demonstrate the effectiveness of the HOC algorithm, a series of performance evaluation is carried out by using a well-known Reuter-21578 news collection. The result of performance evaluation showed that the HOC algorithm greatly contributes to detecting and producing complex concepts by generating the concept hierarchy in a lattice structure.

Implementation and Performance Evaluation of Reporting Interval-adaptive Sensor Control Scheme for Energy Efficient Data Gathering (에너지 효율적 센서 데이터 수집을 위한 리포팅 허용 지연시간 적응형 센서 제어 기법 구현 및 성능평가)

  • Shon, Tae-Shik;Choi, Hyo-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.459-464
    • /
    • 2010
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we implement and evaluate a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC), in wireless sensor networks. The TPC is implemented on sensor Mote hardwares. With the help of TPC implemented, sensors selectively use direct links for control and forwarding time critical sensed data and relay links for data forwarding based on the user delay constraints given. Implementation study shows that TPC helps the sensors to increase a significant amount of energy while collecting sensed data from sensors in a real environment.

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

An Energy-Efficient Clustering Mechanism Considering Overlap Avoidance in Wireless Sensor Networks (무선 센서 네트워크에서 중첩 방지를 고려한 효율적인 클러스터링 기법)

  • Choi, Hoon;Jung, Yeon-Su;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.253-259
    • /
    • 2008
  • Because a sensor node in wireless sensor networks is battery operated and energy constrained, reducing energy consumption of each node is one of important issues. The clustering technique can make network topology be hierarchical and reduce energy consumption of each sensor node. In this paper, we propose an efficient clustering mechanism considering overlap avoidance in wireless sensor networks. The proposed method consists of three parts. The first is to elect cluster heads considering each node's energy. Then clusters are formed by using signal strength in the second phase. Finally we can reduce the cluster overlap problem derived from two or more clusters. In addition, this paper includes performance evaluation of our algorithm. Simulation results show that network lifetime was extended up to 75 percents than LEACH and overlapped clusters are decreased down to nearly zero percents.