• Title/Summary/Keyword: Two Mode Data

Search Result 806, Processing Time 0.027 seconds

Optimum Condition of Mobile Phase Composition for Purine Compounds by HCI Program (HCI프로그램을 이용한 퓨린 유도체의 이동상 조성의 최적화 조건)

  • Jin, Chun Hua;Lee, Ju Weon;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.317-320
    • /
    • 2006
  • The optimum mobile phase condition for analysis of the six purine derivatives (caffeine, guanine, hypoxanthine, purine, theobromine, and theophylline) were determined by a HCI program. Reversed-phase HPLC system was used with the binary mobile phase, water and methanol. Three retention models (Snyder, Langmuir, and Binary polynomial) were considered to predict the retention factors. The elution profiles were calculated by the plate theory based on the binary polynomial retention model. From the final calculated results, the binary polynomial retention model showed the best agreements between the calculated and experimental data. In the isocratic mode, the optimum mobile phase composition of water/methanol is 93/7(v/v). However, we used step-gradient mode to decrease the run-time ($1^{st}$ mobile phase : water/methanol = 93/7 (v/v), gradient time : 5 min, $2^{nd}$ mobile phase : water/methanol = 75/25 (v/v)). The experimental and simulated profiles of above the two conditions show a good agreement.

A comparison of the fracture resistances of endodontically treated mandibular premolars restored with endocrowns and glass fiber post-core retained conventional crowns

  • Guo, Jing;Wang, Zhiming;Li, Xuesheng;Sun, Chaoyang;Gao, Erdong;Li, Hongbo
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.489-493
    • /
    • 2016
  • PURPOSE. This in-vitro study aimed to evaluate the fracture resistances and failure modes of endodontically treated mandibular premolars restored with endocrowns and conventional post-core retained crowns. MATERIALS AND METHODS. Thirty mandibular premolars were assigned into three groups (n=10): GI, intact teeth; GE, teeth with endocrowns; GC, teeth with conventional post-core supported crowns. Except for the teeth in group GI, all specimens were cut to 1.5 mm above the cementoenamel junction and endodontically treated. Both endocrowns and conventional crowns were fabricated from lithium-disilicate blocks using a CEREC 3D CAD/CAM unit. All specimens were subjected to thermocycling and then to $45^{\circ}$ oblique compressive load until fracture occurred. The fracture resistance and failure mode of each specimen were recorded. Data were analyzed with one-way ANOVA and LSD Post Hoc Test (${\alpha}=.05$). RESULTS. The fracture resistances of GE and GC were significantly lower than that of GI (P<.01), while no significant difference was found between GE and GC (P=.702). As of the failure mode, most of the specimens in GE and GC were unfavorable while a higher occurrence of favorable failure mode was presented in GI. CONCLUSION. For the restoration of mandibular premolar, endocrown shows no advantage in fracture resistance when compared with the conventional method. Both of the two methods cannot rehabilitate endodontically treated teeth with the same fracture resistances that intact mandibular premolars have.

Development of a Model for Evaluating Metropolitan Railways' Competitiveness Against Passenger Cars: Focusing on the Express Train Service of Gyeongeui·Joongang Connected Line (광역전철의 승용차 경쟁력 평가모형 개발 : 경의선·중앙선 급행열차 직결운행을 중심으로)

  • Lee, Taek-Young;Jin, Jang-Won;Choi, Chang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.54-63
    • /
    • 2017
  • With the aim of promoting the use of metropolitan railways, the present research developed a mode choice model for evaluating its competitiveness against passenger cars. A case study was carried out with Gyeongeui and Joongang line, and the area of interest was the direct operating railway between Ilsan and Guri station where the two lines intersect. The mode choice model was a disaggregate behavior model which used Stated Preference (SP) survey data, and the plot of competition was between private passenger cars and express trains. As a result, the mode choice model was established, and this model was used to analyze characteristics of passengers' time value and elasticity. It was shown that reducing travel time is more efficient than reducing travel cost when it comes to operating express trains in metropolitan railways. Therefore, policies designed for activating the use of metropolitan railways should expand direct operating service of individual lines and run more express trains in order to minimize transfer and in-vehicle time.

GC/MS and its applications for the analysis of cosmetic produtcts (GC/MS와 화장품 분석의 응용)

  • 노경원
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 1993
  • Gas chromatography serves to separate the mixtures into its components, and mass spectrometer is used to analyzing of unknown compounds. But there are many problems the identification of horn compounds using by GC only. As this reason GC/MS a very powerful analyzing technique. Mass spectrometer consists of 1) inlet stem 2) ion source 3) Bass filter 4) detectors and 5) data system. There are two analyzing modes in the GC/MS, those are scan and SIM(selected ion mom toping) modes. Scan mode is used when analyzing unknown compounds and SIM mode al lows the mass spectrometer to detect specific compound with very high sensitivity. As GC/MS applications for the analysis of cosmetic products, volatile compounds in lotion, earn foundation and hair color, and carbon distribution of fatty acids in soap were performed. Also as a new sample pre-treatment technique, head space sampler/GC/MS introduced in order to analyze the volatile compounds in a toothpaste.

  • PDF

A Design of Authentication/Security Processor IP for Wireless USB (무선 USB 인증/보안용 프로세서 IP 설계)

  • Yang, Hyun-Chang;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2031-2038
    • /
    • 2008
  • A small-area and high-speed authentication/security processor (WUSB_Sec) IP is designed, which performs the 4-way handshake protocol for authentication between host and device, and data encryption/decryption of wireless USB system. The PRF-256 and PRF-64 are implemented by CCM (Counter mode with CBC-MAC) operation, and the CCM is designed with two AES (Advanced Encryption Standard) encryption coles working concurrently for parallel processing of CBC mode and CTR mode operations. The AES core that is an essential block of the WUSB_Sec processor is designed by applying composite field arithmetic on AF$(((2^2)^2)^2)$. Also, S-Box sharing between SubByte block and key scheduler block reduces the gate count by 10%. The designed WUSB_Sec processor has 25,000 gates and the estimated throughput rate is about 480Mbps at 120MHz clock frequency.

Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform

  • Wang, Zuo-Cai;Geng, Dong;Ren, Wei-Xin;Chen, Gen-Da;Zhang, Guang-Feng
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method for structural nonlinearity quantification and damage detection under earthquake loads. The measured structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this paper indicates that the instantaneous frequency of the decomposed measured response includes a slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which represents the damage severity of structure, is defined based on the integrated instantaneous frequency in this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity index is estimated from the experimental data of a seven-story building under four earthquake excitations. The index values for the building subjected to a low intensity earthquake excitation, two medium intensity earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, and 39.5%, respectively.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

An Experimental Study on the Performance Characteristics of a Single-Circuit Multi Cycle and a Bypass Two-Circuit Multi Cycle (단일유로 멀티사이클 및 바이패스유로 멀티사이클 적용 냉동시스템의 성능특성에 관한 실험적 연구)

  • Song, Young-Seung;Jung, Hae-Won;Yoon, Won-Jae;Kim, Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.7
    • /
    • pp.513-519
    • /
    • 2011
  • The object of this study is to investigate the performance characteristics of refrigerators using a single-circuit multi cycle and a bypass two-circuit multi cycle. Each refrigeration cycle was tested by varying secondary fluid mass flow rate and temperature. Based on the experimental data, the optimum refrigerant charge was 48 g and the COP at the optimum secondary fluid mass flow rate was 1.53 for the single-circuit multi cycle. For freezer(F)-only mode, both the single-circuit multi cycle and the bypass two-circuit multi cycle were operated at overcharge conditions, resulting in an increase of the secondary fluid mass flow rate. The maximum COPs of the single-circuit multi cycle and the bypass two-circuit multi cycle were 1.22 and 1.35, respectively. The COP increased by 10.7% with the application of the bypass two-circuit multi cycle.

Comparison of Methods for Linkage Analysis of Affected Sibship Data (이환 형제 자료에 대한 유전적 연관성 분석 방법의 비교)

  • Go, Min-Jin;Lim, Kil-Seob;Lee, Hak-Bae;Song, Ki-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.2
    • /
    • pp.329-340
    • /
    • 2009
  • For complex diseases such as diabetes, hypertension, it is believed that model-free methods might work better because they do not require a precise knowledge of the mode of inheritance controlling the disease trait. This is done by estimating the sharing probabilities that a pair shares zero, one, or two alleles identical by descent(IBD) and has some specific branches of test procedure, i.e., the mean test, the proportion test, and the minmax test. Among them, the minmax test is known to be more robust than others regardless of genetic mode of inheritance in current use. In this study, we compared the power of the methods which are based on minmax test and considering weighting schemes for sib-pairs to analyze sibship data. In simulation result, we found that the method based on Suarez' was more powerful than any others without respect to marker allele frequency, genetic mode of inheritance, sibship size. Also, The power of both Suarez- and Hodge-based methods was higher when marker allele frequency and sibship size were higher, and this result was remarkable in dominant mode of inheritance especially.

High Resolution Fine Dust Mass Concentration Calculation Using Two-wavelength Scanning Lidar System (두파장 스캐닝 라이다 시스템을 이용한 고해상도 미세먼지 질량 농도 산출)

  • Noh, Youngmin;Kim, Dukhyun;Choi, Sungchul;Choi, Changgi;Kim, TaeGyeong;Kim, Gahyeong;Shin, Dongho
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1681-1690
    • /
    • 2020
  • A scanning lidar system has been developed. The system has two wavelength observation channels of 532 and 1064 nm and is capable of 360-degree horizontal scanning observation. In addition, an analysis method that can classify the measured particle as an indicator of coarse-mode particle (PM2.5-10) and an indicator of fine-mode particles (PM2.5) and calculate the mass concentration of each has been developed by using the backscatter coefficient at two wavelengths. It was applied to the data calculated by observation. The mass concentrations of PM10 and PM2.5, which showed a distribution of 22-110 ㎍/㎥ and 7-78 ㎍/㎥, respectively, were successfully calculated in the Ulsan Onsan Industrial Complex using the developed scanning lidar system. The analyzed results showed similar values to the mass concentrations measured on the ground around the lidar observation area, and it was confirmed that high concentrations of 80-110 ㎍/㎥ and 60-78 ㎍/㎥ were measured at points discharged from factories, respectively.