• Title/Summary/Keyword: Two Mode Data

Search Result 806, Processing Time 0.035 seconds

Identification of flutter derivatives of bridge decks using stochastic search technique

  • Chen, Ai-Rong;Xu, Fu-You;Ma, Ru-Jin
    • Wind and Structures
    • /
    • v.9 no.6
    • /
    • pp.441-455
    • /
    • 2006
  • A more applicable optimization model for extracting flutter derivatives of bridge decks is presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical bending and torsional free vibration data. A stochastic search technique for searching the optimal solution of optimization problem is developed, which is more convenient in understanding and programming than the alternate iteration technique, and testified to be a valid and efficient method using two numerical examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are extracted by the stochastic search technique, and compared with the identification results using the modified least-square method. The Empirical Mode Decomposition method is employed to eliminate noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional motion, by which the identification precision of flutter derivatives is improved.

OPTIMUM AKN BURN PLANNING FOR ORBITAL TRANSFER OF KOREASAT (무궁화 위성의 궤도전이를 위한 최적 원지점 점화 계획)

  • 송우영;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.296-307
    • /
    • 1994
  • Using X-Window system (Motif Graphic User Interface), the AKM (Apogee Kick Motor) firing software for Koreasat which will be launched in 1995 has been developed to transfer the spacecraft from its transfer orbit, provided by the DeltaII launch vehicle, into a nearly geostationary drift orbit. The AKM firing software runs in one of two modes. In mission analysis mode, using a fixed magnitude impulsive velocity change, it provides the necessary data for planning the burn parameters. In insert mode, it uses the orbit propagator function to integrate the spacecraft state through the AKM burn. In this case, an AKM thrust profile and specific impulse are applied to the necessary data for planning the burn parameters to obtain the best possible drift orbit. The apogee burn planning simulation for orbital transfer of Koreasat has been performed using the AKM firing software. And the result of this simulation has been analyzed.

  • PDF

The Application of a Microwave Sensor for Traffic Signal Control on Urban Arterial (도시간선도로상에서 교통신호제어를 위한 초단파 검지기(RTMS)의 적용성에 관한 연구)

  • 오영태;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.4
    • /
    • pp.133-151
    • /
    • 1995
  • The collective of highly reliable traffic data is necessary for traffic signal control. This study is to test application of RTMS sensor to traffic signal control. In order to find out the possibility of its application th traffic signal control, 5 types of experiments were performed. The major findings are as follows ; -The detection are a has been changing according to degree and gain. -At the results of experiments for interference are a measure, Degree 60 is stable condition. -At the results of reliability test for volume and speed. the error rate decreases as speed increases and that of Zone 1 is lower than that of Zone 3. -Two modes are set up for reliability test of traffic volume. It founds that the detection reliability of the stopped vehicles are higher than that of the passing vehicles at sidefire-intersection mode. It founds that the results are vice-versa at sidefire-highway mode. Conclusively, this sensor cannot directly apply to colection of traffic data for traffic signal control. However, this sensor can be substituted for a loop detector which is used popularly for signal control, and freeway traffic control if above faults are made up.

  • PDF

Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads

  • Kang, Hyun-Sik;Lim, Seo-Hyung;Moon, Tae-Sup;Stiemer, S.F.
    • Steel and Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.17-34
    • /
    • 2005
  • This paper presents an experimental study and its findings of the behavior of circular and square stub columns filled with high strength concrete ($f_c^{\prime}$=49MPa) and polymer cement concrete (PCC) under concentric compressive load. Twenty-four specimens were tested to investigate the effects of variations in the tube shape (circular, square), wall thickness, and concrete type on the axial strength of stub columns. The characteristics of CFT stub columns filled with two types of concrete were investigated in order to collect the basic design data for using the PCC for the CFT columns. The experimental investigations included consideration of the effects of the concrete fill on the failure mode, ultimate strength, initial stiffness and deformation capacity. One of the key findings of this study was that circular section members filled with PCC retain their structural resistance without reduction far beyond the ultimate capacity. The results presented in this paper will provide experimental data to aid in the development of design procedures for the use of advanced concretes in CFT columns. Additionally, these results give structural designers invaluable insight into the realistic behavior of CFT columns.

Computation for Deformation Modes of a Flexible Body in Multibody System using Experimental Modal Analysis (실험적 모드해석을 이용한 다물체계내 유연체의 변형보드 계산)

  • Kim, Hyo-Sig;Kim, Sang-Sup
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1718-1723
    • /
    • 2003
  • This paper presents a computational method for deformation modes of a flexible body in multibody system from the experimental modal analysis and an efficient method for flexible multibody dynamic analysis by use of the modes. It is difficult to directly use experimental modal parameters in flexible multibody dynamic analysis. The major reasons are that there are many inconsistencies between experimental and analytical modal data and experimental noises are inherent in the experimental data. So two methods, such as, a method for ortho-normalization of experimental modes and the other one for mode expansion, are suggested to gain deformation modes of a flexible body from the experimental modal parameters. Using the virtual work principle, the equation of motion of a flexible body is derived. The effectiveness of the proposed method will be verified in the numerical example of cab vibration of a truck by comparing analysis and test results.

  • PDF

Precise Positioning of Autonomous Underwater Vehicle in Post-processing Mode

  • Felski, Andrzej
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.513-517
    • /
    • 2006
  • Autonomous Underwater Vehicles plays specific role in underwater investigation. Generally, this kind of vehicles will move along a planned path for sea bottom or underwater installations inspections, search for mineral deposits along shelves, seeking lost items including bottom mines or for hydrographic measurements. A crucial barrier for it remains the possibility of precise determination of their underwater position. Commonly used radionavigation systems do not work in such circumstances or do not guarantee the required accuracies. In the paper some new solution is proposed on the assumption that it is possible to increase the precision by certain processing of a combination of measurements conducted by means of different techniques. Objective of the paper is the idea of navigation of AUV which consists of two phases: firstly a trip of AUV along pre-planned route and after that postprocessed transformation of collected data in post-processing mode. During the processing of collected data the modern adjustment methods have been applied, mainly estimation by means of least squares and M-estimation. Application of these methods should be associated with the measuring and geometric conditions of navigational tasks and thus suited for specific scientific and technical problems of underwater navigation. The first results of computer aided investigation will be presented and the basic scope of these application and possible development directions will be indicated also. The paper is prepared as an partial results of the works carried out within a framework of the research Project: 'Improvement of the Precise Underwater Vehicle Navigation Methods' financed by the Polish Ministry of Education and Science (No 0 T00A 012 25).

  • PDF

High Performance HIGHT Design with Extended 128-bit Data Block Length for WSN (WSN을 위한 128비트 확장된 데이터 블록을 갖는 고성능 HIGHT 설계)

  • Kim, Seong-Youl;Lee, Je-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.124-130
    • /
    • 2015
  • This paper presents a high performance HIGHT processor that can be applicable for CCM mode. In fact, HIGHT algorithm is a 64-bit block cipher. However, the proposed HIGHT extends the basic block length to 128-bit. The proposed HIGHT is operated as 128-bit block cipher and it can treat 128-bit block at once. Thus, it can be applicable for the various WSN applications that need fast and ultralight 128-bit block cipher, in particular, to be operated in CCM mode. In addition, the proposed HIGHT processor shares the common logics such as 128-bit key scheduler and control logics during encryption and decryption to reduce the area overhead caused by the extension of data block length. From the simulation results, the circuit area and power consumption of the proposed HIGHT are increases as 40% and 64% compared to the conventional 64-bit counterpart. However, the throughput of the proposed HIGHT can be up to two times as fast. Consequently, the proposed HIGHT is useful for USN and handheld devices based on battery as well as RFID tag the size of circuit is less than 5,000 gates.

Design and development of enhanced criticality alarm system for nuclear applications

  • Srinivas Reddy, Padi;Kumar, R. Amudhu Ramesh;Mathews, M. Geo;Amarendra, G.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.690-697
    • /
    • 2018
  • Criticality alarm systems (CASs) are mandatory in nuclear plants for prompt alarm in the event of any criticality incident. False criticality alarms are not desirable as they create a panic environment for radiation workers. The present article describes the design enhancement of the CAS at each stage and provides maximum availability, preventing false criticality alarms. The failure mode and effect analysis are carried out on each element of a CAS. Based on the analysis, additional hardware circuits are developed for early fault detection. Two different methods are developed, one method for channel loop functionality test and another method for dose alarm test using electronic transient pulse. The design enhancement made for the external systems that are integrated with a CAS includes the power supply, criticality evacuation hooter circuit, radiation data acquisition system along with selection of different soft alarm set points, and centralized electronic test facility. The CAS incorporating all improvements are assembled, installed, tested, and validated along with rigorous surveillance procedures in a nuclear plant for a period of 18,000 h.

Investigating the performance of different decomposition methods in rainfall prediction from LightGBM algorithm

  • Narimani, Roya;Jun, Changhyun;Nezhad, Somayeh Moghimi;Parisouj, Peiman
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.150-150
    • /
    • 2022
  • This study investigates the roles of decomposition methods on high accuracy in daily rainfall prediction from light gradient boosting machine (LightGBM) algorithm. Here, empirical mode decomposition (EMD) and singular spectrum analysis (SSA) methods were considered to decompose and reconstruct input time series into trend terms, fluctuating terms, and noise components. The decomposed time series from EMD and SSA methods were used as input data for LightGBM algorithm in two hybrid models, including empirical mode-based light gradient boosting machine (EMDGBM) and singular spectrum analysis-based light gradient boosting machine (SSAGBM), respectively. A total of four parameters (i.e., temperature, humidity, wind speed, and rainfall) at a daily scale from 2003 to 2017 is used as input data for daily rainfall prediction. As results from statistical performance indicators, it indicates that the SSAGBM model shows a better performance than the EMDGBM model and the original LightGBM algorithm with no decomposition methods. It represents that the accuracy of LightGBM algorithm in rainfall prediction was improved with the SSA method when using multivariate dataset.

  • PDF

A study on characteristics of mode shapes of symmetrical objects using radial Electronic Shearograhpy (동경방향 스펙클 전단 간섭계를 이용한 대칭형 물체의 진동 모드 특성에 관한 연구)

  • 최장섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.319-324
    • /
    • 1996
  • In this paper, radial sheared eletronic shearopgraphy was studied in order to measure vibration characteristics of circular or radial symmetric objects. We calculated amplitude of vibration by using eletro-optic holography theory, and utilized a porror prism for optical arrangement of sheared two images in this experiment. In this case, the data measured by shearing interferometer give us a distribution of the gradient of vibration amplitude. This developed system is applied to symmetical objects such as fans of airconditioner and circular plates to test vibration characteristics.

  • PDF