• 제목/요약/키워드: Two Dimensional Surface Model

검색결과 604건 처리시간 0.029초

3차원 표면 연마기 시스템의 최적설계 (Optimum Design of 3-Dimensional Panel Surface Grinder System)

  • 이수훈
    • 한국생산제조학회지
    • /
    • 제9권2호
    • /
    • pp.52-58
    • /
    • 2000
  • the quality of a TV is closely connected with the high quality surface of Braun tube. To get high quality surface an improved grinding system is needed. It has three main parts : the housing part of supporting frame the outershaft part rotat-ed by motor and the innershaft part having eccentricity from the rotation axis of the outershaft. the housing part and the outershaft part are connected by outerbearings, The outershaft part and the innershaft part are connected by innerbearings. Although the outershaft part is rotated at high-speed the innershaft part is not rotated by offset coupling. The high quality grinding surface can be obtained by this mechanism of panel surface grinder, Because the innershaft is unbalanced by eccentricity from rotation axis of outershaft the unbalancing vibration is resulted In this rotor system with high-speed rota-tion the unbalancing vibration makes the opertion unstable. In this research the transfer function is obtained bythe frequency response analysis of finite element model. The simu-lation result is proved by comparing with the experimental result measured by signal analyzer Then the results are corre-lated. in order to improve the design an optimization method is used instead of two-planes balancing method The parts of the 3-dimensional panel surface grinder satisfy the each constraint, The result shows that the design of the panel surface grinder can be optimized.

  • PDF

Modeling of transient temperature distribution in multilayer asphalt pavement

  • Teltayev, Bagdat B.;Aitbayev, Koblanbek
    • Geomechanics and Engineering
    • /
    • 제8권2호
    • /
    • pp.133-152
    • /
    • 2015
  • Mathematical model has been developed for determination of temperature field in multilayer pavement and subgrade, which considers transfer of heat by conduction and convection, receiving of heat from total solar radiation and atmosphere emission, output of heat due to the emission from the surface of pavement. The developed model has been realized by the finite element method for two dimensional problem using two dimensional second order finite element. Calculations for temperature field have been made with the programme realized on the standard mathematical package MATLAB. Accuracy of the developed model has been evaluated by comparison of temperatures, obtained theoretically and experimentally. The results of comparison showed high accuracy of the model. Long-term calculation (within three months) has been made in pavement points in accordance with the data of meteorological station for air temperature. Some regularities have been determined for variation of temperature field.

강우에 의한 사면붕괴에 관한 2차원 수치모의 (Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure)

  • 램 크리쉬나 레그미;정관수;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Simulations of Capacitively Coupled Plasmas Between Unequal-sized Powered and Grounded Electrodes Using One- and Two-dimensional Fluid Models

  • So, Soon-Youl
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권5호
    • /
    • pp.220-229
    • /
    • 2004
  • We have examined a technique of one-dimensional (1D) fluid modeling for radio-frequency Ar capacitively coupled plasmas (CCP) between unequal-sized powered and grounded electrodes. In order to simulate a practical CCP reactor configuration with a grounded side wall by the 1D model, it has been assumed that the discharge space has a conic frustum shape; the grounded electrode is larger than the powered one and the discharge space expands with the distance from the powered electrode. In this paper, we focus on how much a 1D model can approximate a 2D model and evaluate their comparisons. The plasma density calculated by the 1D model has been compared with that by a two-dimensional (2D) fluid model, and a qualitative agreement between them has been obtained. In addition, 1D and 2D calculation results for another reactor configuration with equal-sized electrodes have also been presented together for comparison. In the discussion, four CCP models, which are 1D and 2D models with symmetric and asymmetric geometries, are compared with each other and the DC self-bias voltage has been focused on as a characteristic property that reflects the unequal electrode surface areas. Reactor configuration and experimental parameters, which the self-bias depends on, have been investigated to develop the ID modeling for reactor geometry with unequal-sized electrodes.

중·저준위 방사성폐기물 천층처분시설 근계영역의 2차원 통합성능평가 모델 개발 (Development of Two-Dimensional Near-field Integrated Performance Assessment Model for Near-surface LILW Disposal)

  • 방제헌;박주완;정강일
    • 방사성폐기물학회지
    • /
    • 제12권4호
    • /
    • pp.315-334
    • /
    • 2014
  • 월성원자력환경센터 중저준위방사성폐기물 처분시설은 서로 다른 방식의 처분시설이 혼재하고, 월성 원자력발전소와도 인접해있다. 이와 같은 높은 복잡성으로 인해 처분시설 안전성 평가 시 보다 면밀한 현상이해가 필요하다. 기존 1단계 사일로 처분시설의 성능평가모델들에 포함된 불필요한 보수성을 줄이고 복합처분시설에 대한 보다 실제적인 성능을 파악하기 위해서는 다차원 수리/핵종이동 모델이 필요하다. 이와 함께 향후 복합처분시스템의 특성에 기인한 다양한 불확실성을 관리하고 파라미터의 중요도를 분석하기 위해 많은 계산이 필요할 것으로 예상하며, 이를 위해 보다 효율적인 성능평가 모델이 요구된다. 본 논문에서는 두 요건을 충족시키기 위해 수리성능 모델과 핵종이동 모델을 연계한 2단계 천층처분시설의 근계영역 2차원 통합성능평가 모델을 개발하였다. 수리 및 핵종이동은 PORFLOW와 GoldSim 전산 코드를 이용해 평가하였으며, GoldSim 핵종이동 모델은 PORFLOW 핵종이동 모델과의 벤치마크를 통해 검증하였다. GoldSim 모델은 계산효율이 뛰어났으며 기존의 모델에 비해 핵종이동거동을 이해하는데 용이하였다.

대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석 (Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

Dimension Reduction of Solid Models by Mid-Surface Generation

  • Sheen, Dong-Pyoung;Son, Tae-Geun;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.71-80
    • /
    • 2007
  • Recently, feature-based solid modeling systems have been widely used in product design. However, for engineering analysis of a product model, an ed CAD model composed of mid-surfaces is desirable for conditions in which the ed model does not affect analysis result seriously. To meet this requirement, a variety of solid ion methods such as MAT (medial axis transformation) have been proposed to provide an ed CAE model from a solid design model. The algorithm of the MAT approach can be applied to any complicated solid model. However, additional work to trim and extend some parts of the result is required to obtain a practically useful CAE model because the inscribed sphere used in the MAT method generates insufficient surfaces with branches. On the other hand, the mid-surface ion approach supports a practical method for generating a two-dimensional ed model, even though it has difficulties in creating a mid-surface from some complicated parts. In this paper, we propose a dimension reduction approach on solid models based on the midsurface abstraction approach. This approach simplifies the solid model by abbreviating or removing trivial features first such as the fillet, mounting, or protrusion. The geometry of each face is replaced with mid-patches from the simplified model, and then unnecessary topological entities are deleted to generate a clean ed model. Also, additional work, such as extending and stitching mid-patches, completes the generation of a mid-surface model from the patches.

원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향 (Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater)

  • 박성훈
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.

래티스볼츠만 다상류 모델의 검토 및 응용 (An Investigation of Lattice Boltzmann Multi-phase Model and it Application)

  • 강호근;안수환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

유한요소법에 의한 2차원 비저항 모델링 (Two-Dimensional Resistivity Modeling by Finite Element Method)

  • 김희준
    • 자원환경지질
    • /
    • 제19권4호
    • /
    • pp.283-292
    • /
    • 1986
  • 3각형 및 4각형 요소를 사용한 유한요소법으로 임의의 2차원 비저항 구조에서 점전류원에 대한 전위분포를 구하였다. 이 모델링기술은 종래의 차분법보다 지하의 이상물질이나 지표의 지형을 모델화할 때 보다 더 유연할 뿐만 아니라 보다 더 정확한 수치해를 준다. 또한 이 방법은 해의 정확도에 별 영향없이 격자점을 줄일 수 있기 때문에 계산시간이나 기억용량면에서 경제적이다. 본 논문에서는 이러한 특징을 보여줄 몇 가지 모델에 대한 계산 결과를 소개한다.

  • PDF