• Title/Summary/Keyword: Two Dimensional Simulation

Search Result 1,791, Processing Time 0.033 seconds

Three-dimensional numerical simulation of turbulent flow around two high-rise buildings in proximity

  • Liu, Min-Shan
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.271-284
    • /
    • 1998
  • This paper uses the numerical simulation to investigate the interference effect of 3-D turbulent flow around two high rise buildings in proximity at the different relative heights, gaps, and wind velocities. The computer program used to carry out the simulation is based on the control volume method and the SIMPLEST algorithm. The ${\kappa}-{\varepsilon}$ model was used to simulate turbulence effects. Since the contracted flow between two adjacent buildings enhances the strength of vortex shedding from the object building, the pressure coefficient on each side wall of the object building is generally increased by the presence of apposed building. The effect is increased as the relative height or the gap between the two buildings decreases. The velocity on the vertical center line between two buildings is about 1.4 to 1.5 times the upstream wind velocity.

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE (압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구)

  • Lee, M.J.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame (대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석)

  • Jeong, Jae In;Hwang, Jun Young;Lee, Bang Weon;Choi, Mansoo;Chung, Suk Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.

Numerical Simulation of Two-dimensional Nonlinear Waves on Beaches Using a Smoothed Particle Hydrodynamics Method (SPH법을 이용한 해안에서의 2차원 비선형파 수치시뮬레이션)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.525-532
    • /
    • 2010
  • In this paper, wave breakers which occur in two dimensional coasts are simulated using a SPH(Smoothed Particle Hydrodynamics) method which represents the movement of fluidic physical volume with particles. As continuative fluid is approximated to the particles, the simulations are performed using fully Lagrangian method without any grid system. Two-dimensional Navier-Stokes equations and continuity equation are used for the numerical simulations. To generate incident waves, a piston type wavemaker is employed. The accuracy of the wave which is numerically generated by the wavemaker is verified by comparing with analytical results. The computations are carried out with various wave heights and slopes. The wave patterns generated through the numerical simulations are compared with several existing experimental and computational results. Agreement between the experimental data and the computation results is comparatively good. Also, the breaker depth index and the breaker height index from the present calculations are compared with the existing experimental results, and the tendency is very similar.

A Study on the Numerical Simulation Method of Two-dimensional Incompressible Fluid Flows using ISPH Method (ISPH법을 이용한 2차원 비압축성 유체 유동의 수치시뮬레이션 기법 연구)

  • Kim, Cheol-Ho;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.560-568
    • /
    • 2011
  • In SPH(Smoothed Particle Hydrodynamics) method, the fluid has been assumed that it is weakly compressible to solve the basic equations composed of Navier-Stokes equations and continuity equation. That leads to some drawbacks such as non-physical pressure fluctuations and a restriction as like small time steps in computation. In this study, to improve these problems we assume that the fluid is incompressible and the velocity-pressure coupling problem is solved by a projection method(that is, by ISPH method). The two-dimensional computation results of dam breaking and gravitational wave generation are respectively compared with the results of finite volume method and analytical method to confirm the accuracy of the present numerical computation technique. And, the agreements are comparatively acceptable. Subsequently, the green water simulations of a two-dimensional fixed barge are carried out to inspect the possibility of practical application to ship hydrodynamics, those correspond to one of the violent free surface motions with impact loads. The agreement between the experimental data and the present computational results is also comparatively good.