• Title/Summary/Keyword: Two Cylinders

Search Result 400, Processing Time 0.025 seconds

Forces induced by flows past two nearby circular cylinders (두 개의 원형 실린더에 작용하는 유체력)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Yoon, Dong-Hyeog
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2845-2850
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re =100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

Heat transfer on two nearby circular cylinders (두 개의 원형 실린더 주위의 열전달)

  • Han, Tae-Heon;Yang, Kyung-Soo;Yoon, Dong-Hyeog;Lee, Kyong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2890-2895
    • /
    • 2007
  • Heat transfer on two identical nearby circular cylinders immersed in the uniform cross flow at Re = 100 and Pr = 7.0 was numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of heat transfer coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

HEAT TRANSFER ON TWO NEARBY CIRCULAR CYLINDERS (두 개의 원형 실린더 주위의 열전달)

  • Han, T.H.;Yang, K.S.;Yoon, D.H.;Lee, K.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.42-47
    • /
    • 2008
  • Heat transfer on two identical nearby circular cylinders immersed in the uniform cross flow at Re=120 and Pr=0.7 was numerically studied. We consider all possible types of arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of heat transfer coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

Forces Induced by Flows Past Two Nearby Circular Cylinders (두 개의 원형 실린더에 작용하는 유체력)

  • Lee, Kyong-Jun;Yoon, Dong-Hyeog;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.754-763
    • /
    • 2007
  • Flow-induced forces on two identical nearby circular cylinders immersed in the cross flow at Re=100 were numerically studied. We consider all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of flow-induced forces are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of force coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for drag coefficient and lift coefficient for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate flow-induced forces on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

Interference loads of two cylinders in a side-by-side arrangement

  • Blazik-Borowa, Ewa
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.75-93
    • /
    • 2006
  • This paper presents a quasi-steady model of vibrations of two cylinders in a side-by-side arrangement. The cylinders have flexible support and equal diameters. The model assumes that both cylinders participate in the process of vibration, each of them having two degrees of freedom. The movement of cylinders is described by a set of four non-linear differential equations. These equations are evaluated on the basis of a numerical simulation and experimental data. Moreover many features of cylinder vibrations are found from numerical results and are described in this paper.

Two-dimensional High Viscous Flow between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 고 점성 윤활 유동)

  • 이승재;정재택
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.142-149
    • /
    • 2000
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is Investigated based on Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution In the flow field is determined. By Integrating the stress distribution on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is determined as the distance between two cylinders vary. It Is also revealed that the velocity at the far field has finite non-zero value. Special attention is directed to the case of very small distances between two cylinders by way of the lubrication theory.

  • PDF

Analysis for Lubrication between Two Close Rotating Cylinders (근접하여 회전하는 두 원통 사이의 윤활유동해석)

  • 이승재;정호열;정재택
    • Tribology and Lubricants
    • /
    • v.17 no.5
    • /
    • pp.391-398
    • /
    • 2001
  • Two dimensional slow viscous flow around two counter-rotating equal cylinders is investigated based on Stokes'approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns around the cylinders are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the force and the moment exerted on the cylinder are calculated. The flow rate through the gap between the two cylinders is also determined as the distance between two cylinders varies. Special attention is directed to the case of very small distance between two cylinders concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Flow-induced Vibration Characteristics of Two Circular Cylinders in a Side-by-Side Arrangement and the Vibration Mechanism (병렬 배열된 2 원기둥의 유력 진동 특성과 그 메커니즘)

  • Kim, Sang-Il;Lee, Seung-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • This experimental study investigated the characteristics of flow-induced vibration of two elastically supported circular cylinders in a side-by-side arrangement. In particular, the characteristics of the flow-induced vibration of the two cylinders are investigated by changing the flow speed at each spacing ratio L/D (L is the space between two cylinders and D is the diameter of the cylinder). To clarify the mechanism generating the flow-induced vibration of the cylinders, the flow patterns around the two vibrating cylinders are also investigated using a flow visualization test that reproduces the flow-induced vibration of the cylinders with a forced vibration apparatus. As a result, it is clarified that the flow-induced vibration characteristics of the two cylinders arranged side-by-side switch among four patterns as the flow between the two cylinders is switched. Among the three arrangements considered (tandem, staggered, and side-by-side), the arrangement that generates flow-induced vibration of the two cylinders most easily is the side-by-side arrangement.

Flow pattern in the presence of two nearby circular cylinders (두 개의 원형 실린더 주위의 유동 패턴)

  • Lee, Kyong-Jun;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2851-2856
    • /
    • 2007
  • Flow patterns in the presence of two identical nearby circular cylinders at =100 were numerically studied. We considered all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. Eight distinct flow patterns were identified based on vorticity contours and streamlines, which are Base-Bleed, Biased-Base-Bleed, Shear- Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results, we propose a general flow pattern diagram for flows past the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use this diagram to distinguish flow patterns in the presence of two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

  • PDF

Flow Pattern in the Presence of Two Nearby Circular Cylinders (두 개의 원형 실린더 주위의 유동 패턴)

  • Lee, Kyong-Jun;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.724-732
    • /
    • 2007
  • Flow patterns in the presence of two identical nearby circular cylinders at Re=100 were numerically studied. We considered all possible arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. Eight distinct flow patterns were identified based on vorticity contours and streamlines, which are Base-Bleed, Biased-Base-Bleed, Shear-Layer-Reattachment, Induced-Separation, Vortex-Impingement, Flip-Flopping, Modulated Periodic, and Synchronized-Vortex-Shedding. Collecting all the numerical results, we propose a general flow pattern diagram for flows past two nearby cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use this diagram to distinguish flow patterns in the presence of two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.