• Title/Summary/Keyword: Two Color PIV

Search Result 14, Processing Time 0.021 seconds

Papers : A Study on the Characteristics of the Ramjet Engine Combustor using a Two Color PIV Technique (논문 : Two Color PIV 기법을 이용한 램제트엔진 연소기 특성에 대한 연구)

  • An,Gyu-Bok;Yun,Yeong-Bin;Jeong,In-Seok;Heo,Hwan-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distribytions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a singnal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones and two intake air mixing have been investigated varying inlet angles and dome heights. It is found that the size and air mass ratio of reciculation zones are affected mainly by an inlet angle, but not much by a dome height.

Velocity Distribution Measurements in Mach 2.0 Supersonic Nozzle using Two-Color PIV Method (Two Color PIV 기법을 이용한 마하 2.0 초음속 노즐의 속도분포 측정)

  • 안규복;임성규;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • A two-color particle image velocimetry (PIV) has been developed for measuring two dimensional velocity flowfields and applied to a Mach 2.0 supersonic nozzle. This technique is similar to a single-color PIV technique except that two different color laser beams are used to solve the directional ambiguity problem. A green-color laser sheet (532 nm: 2nd harmonic beam of YAG laser) and a red-color laser sheet (619 nm: output beam from YAG pumped Dye laser using Rhodamine 640) are employed to illuminate the seeded particles. A high resolution (3060${\times}$2036) digital color CCD camera is used to record the particle positions. This system eliminates the photographic-film processing time and subsequent digitization time as well as the complexities associated with conventional image shifting techniques for solving directional ambiguity problem. The two-color PIV also has the advantage that velocity distributions in high speed flowfields can be measured simply and accurately by varying the time interval between two different laser beams due to its high signal-to-noise ratio and thereby less requirement of panicle pair numbers for a velocity vector in one interrogation spot. The velocity distribution in the Mach 2.0 supersonic nozzle has been measured and the over-expanded shock cell structure can be predicted by the strain rate field. These results are compared and analyzed with the schlieren photograph for the velocity distributions and shock location.

  • PDF

Flow Characteristics of Liquid Ramjet Engines using Two Color PIV

  • Ahn Kyubok;Yoon Youngbin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.151-163
    • /
    • 2001
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distributions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a signal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones, intake air mixing and turbulent kinetic energy have been investigated varying inlet angles and dome heights. It was found that the primary recirculation zone is affected mainly by the dome height, whereas the secondary recirculation zone is influenced by the air inlet angle.

  • PDF

Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method (이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석)

  • Lee, Gi-Hyeong;U, Yeong-Wan;Park, Sang-Chan;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

A Study on Analysis of Intake Flow in a 5-valves Gasoline Engine by using a Two Color PIV System (이색 PIV를 이용한 5밸브 가솔린 엔진의 흡입 유동 해석)

  • Woo, Young-Wan;Park, Sang-Chan;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.933-938
    • /
    • 2001
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These vehicles have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, velocity profiles at near intake valves were inspected by using a two-color PIV and laser sheet method with tumble control valve(TCV). In addition, steady flow tests were performed to quantify tumble ratio on flow-fields generated with a TCV. These experimental results show that the tendency of the tunble ratio in intake 3-valve engine is different from the one in intake 2-valve engine. From this results, the intake flow characteristics around intake valves were made clear.

  • PDF

The Study on Two-color PIV Algorithm for a Measurement of Droplet Velocity (액적의 속도 측정을 위한 이색 PIV 알고리즘 연구)

  • Lee, K.H.;Lee, C.S.;Oh, S.I.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.13-18
    • /
    • 1999
  • It has been known that spray characteristics have an important effect on the mixture formation and directly influence the engine performances and the emissions. Up to now, the measurement of droplet size is well developed such as PDPA and PMAS though the behavior of small droplets during secondary atomization is not clear. Particle image velocimetry(PIV), a planar measuring technique, is a very efficient tool for studying complicated behavior and a fast and reliable method to track numerous droplets during injection. In this study, two-color scanning PIV is designed to obtain quasi-instantaneous two dimensional velocity data by using he-ion laser, rotating mirror and beam splitter. This PIV method which has high temporal and spatial resolution provides the information about the small complex droplet behavior.

  • PDF

Two Color PIV를 이용한 램제트엔진 연소기 특성에 대한 연구

  • 안규복;심재현;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.13-13
    • /
    • 2000
  • 램제트 엔진에 대한 기초 연구로서 양쪽 대칭의 공기 흡입구를 갖는 2차원 형태의 램제트엔진 연소기를 제작하여 그 특성을 분석하였다. 실험은 흡입공기의 연소실내 유입각도와 연소실내의 도움 위치에 따른 연소실 형상을 바꾸어가며 연소기내의 유동특성을 살펴보았다. 이를 위하여 고속 유동장의 2차원 평면 속도 분포를 측정할 수 있는 two color PIV 기법을 개발하였다. 이 기법은 다른 색의 두 레이저빔을 사용하여 방향성의 문제를 해결하며, 이미지의 색 분리에 따른 거의 완벽한 cross-correlation이 가능하며 높은 single-to-noise 비를 얻게 됨으로써 dynamic range의 증가가 가능해지며, 조사 영역 안에 존재해야 하는 입자 쌍의 수가 줄어들게 된다.(중략)

  • PDF

Measurements of Temperature and Flow Fields with Sub-Millimeter Spatial Resolution Using Two-Color Laser Induced Fluorescence (LIF) and Micro-Particle Image Velocimetry (PIV)

  • Kim Hyun Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.716-727
    • /
    • 2005
  • Comprehensive measurements for velocity and temperature fields have been conducted. A Micro PIV 2-color LIF system have been setup to measure the buoyancy driven fields in a 1-mm heated channel with low Grashof-Prandtl numbers [$86]. Fluorescence microscopy is combined with an MPIV system to obtain enough intensity images and clear pictures from nano-scale fluorescence particles. The spatial resolution of the Micro PIV system is $75{\mu}m\;by\;67{\mu}m$ and error due to Brownian motion is estimated $1.05\%$. Temperature measurements have achieved the $4.7\;{\mu}m$ spatial resolution with relatively large data uncertainties the present experiment. The measurement uncertainties have been decreased down to less than ${\pm}1.0^{\circ}C$ when measurement resolution is equivalent to $76\;{\mu}m$. Measured velocity and temperature fields will be compared with numerical results to examine the feasibility of development as a diagnostic technique.

Quantitative Visualization of Supersonic Jet Flows (초음속 제트 유동의 정량적 가시화)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • Sonic and supersonic jets include many complicated flow physics associated with shock waves, shear layers, vortices as well as strong interactions among them, and have a variety of engineering applications. Much has been learned from the previous researches on the sonic and supersonic jets but quantitative assessment of these jets is still uneasy due to the high velocity of flow, compressibility effects, and sometimes flow unsteadiness. In the present study, the sonic jets issuing from a convergent nozzle were measured by PIV and Schlieren optical techniques. Particle Image Velocimetry (PIV) with Olive oil particles of $1{\mu}m$ was employed to obtain the velocity field of the jets, and the black-white and color Schlieren images were obtained using Xe ramp. A color filter of Blue-Green-Red has been designed for the color Schlieren and obtained from an Ink jet printer. In experiments, two types of sonic nozzles were used at different operating pressure ratios(NPR). The obtained images clearly showed the major features of the jets such as Mach disk, barrel shock waves, jet boundaries, etc.

A Study on the Self Flue Gas Recirculating Flow of the Regenerative Low NOx Burner (축열식 저 NOx 연소기의 배기가스 내부 재순환 유동에 대한 연구)

  • Kim, Jong-Gyu;Kang, Min-Wook;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.17-26
    • /
    • 2001
  • Self flue gas recirculation flow is an effective method for low NOx emission in the regenerative low NOx burner. The object of this study is to analyze the self flue gas recirculating flow by varying jet velocity of the combustion air. Fuel and air flow rates are fixed and combustion air jet nozzle diameters are 13, 6.5 and 5mm. The stoichiometric line is obtained from the concentration of the fuel using an acetone PLIF technique. It is found that the self flue gas recirculating flow is entrained into that line using a two color PIV technique. As the jet velocity of combustion air is increased, the flue gas entrainment rate into the stoichiometric line is increased. This result suggests that NOx emission can be reduced due to the effects of flue gas which is lowering the flame temperatures.

  • PDF