• 제목/요약/키워드: Twisted structure

검색결과 116건 처리시간 0.024초

레이놀즈 수가 와류 감쇠 및 저항 저감형 나선형 해양 구조물 주위 유동에 미치는 영향 (Reynolds number effects on flow over twisted offshore structure with drag reduction and vortex suppression)

  • 정재환;윤현식
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2015
  • We investigated the Reynolds number effects on the flow over a twisted offshore structure in the range of 3×103≤ Re ≤ 1 × 104. To analyze the effect of the twisted surface treatment, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the cylindrical structure was also carried out to compare the results with those of the twisted offshore structure. As Re increased, the mean drag and lift coefficient of the twisted offshore structure increased with the same tendency as those of the cylindrical structure. However, the increases in the mean drag and lift coefficient of the twisted offshore structure were much smaller than those of the cylindrical structure. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted offshore structure occurred compared to those of the cylindrical cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted offshore structure achieved a significant reduction of over 96% in VIV compared with that of the cylindrical structure, regardless of increasing Re. As a result, we concluded that the twisted offshore structure effectively controlled the flow structures with reductions in the drag and VIV compared with the cylindrical structure, irrespective of increasing Re.

비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석 (Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.

비틀어진 형상(Twisted)을 가지는 고층 구조물의 역학적 특성 분석 (Analysis of the Static Characteristics of High-Rise Structures With Twisted Shape)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.93-100
    • /
    • 2020
  • In this study, structural characteristics were analyzed by combining gravity load and lateral loads such as seismic loads through static analysis of example structures, and the static characteristics of the twisted structure according to the plane rotation angle were also analyzed. Example structures were selected as regular structure, and twisted structures; 1.0, 2.0, and 3.0 degree angle of rotation per story, and static analysis was performed by the load combination case 1 and case 2. As a result the story drift ratio of the twisted-shaped structure also increased as the plane rotation angle per story increased. The eccentricity according to the load combination was the highest in the lower stories of all analysis models, and the eccentricity was found to be larger as the rotation angle decreased. The twisted-shaped structure was more responsible for the bending moment of the column than the regular structure, and the vertical member axial force of all analysis models was almost similar.

Twisted Differential Line Structure on High-Speed Printed Circuit Boards to Enhance Immunity to Crosstalk and External Noise

  • Kam, Dong-Gun;Kim, Joung-Ho
    • 한국전자파학회지:전자파기술
    • /
    • 제14권1호
    • /
    • pp.35-42
    • /
    • 2003
  • Differential signaling has become a popular choice for high-speed interconnection schemes on Printed Circuit Boards (PCBs), offering superior immunity to external noise. However, conventional differential transmission lines on PCBs have problems, such as crosstalk and radiated emission. To overcome these, we propose a Twisted Differential Line (TDL) structure on a multi-layer PCB. Its improved immunity to crosstalk noise and the reduced radiated emission has been successfully demonstrated by measurement. The proposed structure is proven to transmit 3 Gbps digital signals with a clear eye-pattern. Furthermore, it is subject to much less crosstalk noise and achieves a 13 dB suppression of radiated emission. Index Terms - Twisted Differential Line, Differential Signaling, Crosstalk, Radiated Emission, Transmission Line, Twisted Pair

수직축 풍력 터빈 블레이드의 최적화 설계 및 Vortex 구조 분석 (Optimized blade of small vertical axis wind turbine and its vortex structure analysis)

  • 나지성;고승철;선상규;방유석;이준상
    • 한국가시화정보학회지
    • /
    • 제13권1호
    • /
    • pp.15-20
    • /
    • 2015
  • Sensitivity studies of blade angle and twisted angle are numerically investigated to optimize the Savonius blade. As blade angle increases, the contact area between blade and wind decreases, showing the suppression of the vortex generation near blade. Compared to the blade angle of 0 degree, the blade angle of 20 degree shows about 2.6% increment of power efficiency. Based on the blade angle of 20 degree, sensitivity studies of the twisted angle are performed. The result indicates that the adjustment of the twisted angle causes the torque of blade to increase. Optimized blade can suppress the formation of the vortex structure in rear region. Also, wind flows without disturbance of vortex when passing through the optimized blade. The 1kw vertical wind turbine system with optimized blade can generate 4442.2kWh per year and have 53% capacity factor.

아웃리거 시스템 적용에 따른 Twisted 초고층 건물의 변위응답분석 (Displacement Response Analysis According to the Outrigger System Arrangement of the Twisted High-Rise Building)

  • 황일근;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.75-82
    • /
    • 2024
  • Since atypical high-rise buildings are vulnerable to gravity loads and seismic loads, various structural systems must be applied to ensure the stability of the structure. In this study, the authors selected a 60-story twisted-shaped structure among atypical high-rise structures as an analytical model to investigate its structural behavior concerning the outrigger system. The structural analyses were performed varying the number of installed layers and the arrangement of the outrigger system, as well as the placement of the mega column, as design variables. The analysis revealed that the most effective position for the outrigger was 0.455H from the top layer, consistent with previous studies. Additionally, connecting outriggers and mega columns significantly reduced the displacement response of the model. From an economic standpoint, it is deemed efficient to connect and install outriggers and mega columns at the structure's ends.

Twisted Yarn 복합재료의 탄성계수 예측모델 (Elastic Model of Twisted Yarn Composites)

  • 변준형;이상관;엄문광
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.57-60
    • /
    • 2002
  • The stiffness model has been proposed to predict elastic constants of twisted yarn composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yarn twist angle were tested. The samples were fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yarn.

  • PDF

와류감쇠 및 저항저감형 나선형 해양 구조물 주위 유동 LES 해석 (Large Eddy Simulation of Flow around Twisted Offshore Structure with Drag Reduction and Vortex Suppression)

  • 정재환;윤현식;최창영;전호환;박동우
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.440-446
    • /
    • 2012
  • A twisted cylinder has been newly designed by rotating the elliptic cross section along the spanwise direction in order to reduce the drag and vorticies in wake region. The flow around the twisted cylinder at a subcritical Reynolds number (Re) of 3000 is investigated to analyze the effect of twisted spiral pattern on the drag reduction and vortex suppression using large eddy simulation (LES). The instantaneous wake structures of the twisted cylinder are compared with those of a circular and a wavy cylinder at the same Re. The shear layer of the twisted cylinder covering the recirculation region is more elongated than that of the circular and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the circular and the wavy cylinder. Consequently, the mean drag coefficient and the fluctuating lift of the twisted cylinder are less than those of the circular and the wavy cylinder.

Landau Level Spectra in a Twisted Bilayer Graphene

  • 이인호;황찬용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.367-367
    • /
    • 2012
  • We investigate Landau level spectra of twisted bilayer graphene under a perpendicular magnetic field, showing that the layers provide rich electronic structure depending on misoriented angle. New types of excitations with Landau level sequences due to the reflection of interlayer coupling level are matter of interest in the present work. We calculate the electronic structure of bilayer systems with a relative small angle rotation of the two graphene layers. Calculated Landau level spectra for twisted bilayer graphene using a continuum formulation are in good agreement with existing experimental and theoretical studies. Twist angle dependent numerical simulations provide significant insights for the nature of the Landau level spectra in bilayer graphene, combining signals from both massive and massless Dirac fermions. We finally discuss the influence of the graphene layers in the experimental sample that related to the magneto-transport measurements including quantum Hall conductance.

  • PDF