• Title/Summary/Keyword: Twin-flow-nozzle

Search Result 45, Processing Time 0.029 seconds

The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer (노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구)

  • Lee, J.W.;Kang, Y.G.;Baek, B.J.;Park, B.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

An Experimental Study on the Spray Characteristics of Internal Mixing Atomizer for Twin Fluid (내부혼합형 2유체 미립화기의 분무 특성에 관한 실험적 연구)

  • Kim, K.C.;Ha, M.H.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.693-698
    • /
    • 2001
  • An experimental study was carried out with an aerated nozzle. This nozzle was well known that the performance of the atomization is better than other ones even though the supplied air pressure is lower than that of them. The purpose of this investigation is to provide the essential information of the aerated nozzle from the nozzle exit. The experimental work was performed in order to analyze the characteristics of the overall flow field from the nozzle exit. The 2-D PDPA system was used to acquire the data in the concerned region. The characteristics of the mean velocity distribution, half-width, and SMD were mainly analyzed. Also the correlation between turbulent kinetic energy and SMD was described with ALR.

  • PDF

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Development of Control System of Twin-Fluid Nozzles for Controlling Spraying Rate and Droplet Size (이류체노즐을 이용한 분무량과 분무입경 제어시스템 개발)

  • 이중용;안형철;정창주
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • In precision chemical application increment of biological efficacy with less chemical is the virtue. spraying rate and droplet size is closely related to biological efficacy. this study was performed to develope a spray-control-system that could control spraying rate and droplet size independently. Twin-fluid nozzles were selected and tested to certify if the nozzles were suitable for the objective of this study. Characteritics of the nozzles i.e., spraying rte and droplet size change u8nder the changes of spraying pressure and air pressure were statistically modeled. The model had I to 1 matching property between dependent variables and independent variables. Using the property and the model, inverse relationship could be determined between variables. A feedback spray control system was developed and tested with predetermined error of 5 % in pressure. The system showed 4 % error in spraying rate and 9 % error in droplets size. Performance of the system could be upgraded by fine tuning but, in practical sense keeping air pressure in the field sprayer was the bottle neck of commercialization of the spray system.

  • PDF

Velocity Measurement around Ramp Injector in Supersonic Flow

  • Koike, Shunsuke;Suzuki, Kentaro;Hirota, Mitsutomo;Takita, Kenichi;Masuya, Goro;Matsumoto, Masashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.117-124
    • /
    • 2004
  • The mixing enhancement is one of the most important problems for the development of scramjet engines. The influence of the streamwise vortices produced by a ramp in a unheated supersonic flow on the mixing of twin jets injected from its base was experimentally investigated. Nominal Mach number of the main airstream and of the twin jets at the nozzle exits were 2.35 and 2.0, respectively. Three dimensional velocity distributions near the ramp with and without injection were measured by Particle Image Velocimetry (PIV). A pair of counter rotating streamwise vortices could be seen behind the injector without injection. On the other hand, two pairs of streamwise vortices could be seen with injection. The outer one had the same direction as the vortex pair produced by the ramp, but they were stronger than those produced by the ramp. The inner ones had the opposite directions to the outer ones. It is considered that these vortices enhance the mixing near the injector.

  • PDF

A STUDY ON HIGH-EFFICIENCY ATOMIZATION OF MOLTEN MATERIALS (PART 1: AN EXPERIMENTAL STUDY ON SUPPLYING MECHANISM BY AIR JETS) (Atomize 법에 의한 용융소재의 고효율 미세화에 관한 연구 (제1보:공기제트에 의한 액체의 공급기구))

  • Oh, J.G.;Lee, Ch.W.;Seok, J.K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.35-42
    • /
    • 1997
  • An innovating technique of atomizer has been proposed to supply and to atomise molten materials. Both of a simple geometry of nozzle and an improved nozzle have been fabricated in the present study. With these nozzles, characteristics of the suction and disintegration have been empirically investigated. The important conclusions are as follows; In the case of a simple nozzle: 1) Although the sucking up and supplying of molten materials are available, the applications of powder metallurgy are limited. 2) It is concluded that the more air flow rate, $W_A$ or the shorter the height of air nozzle from the surface of supplied water, $L_h$, the more the atomizing mass of liquids, $W_L$. In the case of an improved nozzle: 3) The stable liquids can be supplied due to cut off the passage of surrounding air entrainment by air jets. 4) The atomizing mass of liquids, $W_L$ has affected not so much on the height of nozzle from the surface of supplied water, $L_h$ as that from the orifice, hc.

  • PDF

Spray Characteristics in the cross region of twin spray between impinging F-O-O-F type injectors (충돌형 F-O-O-F 인젝터의 이중분무 중첩영역에서의 분무특성에 관한 연구)

  • Kwon, K.C.;Lee, E.S.;Kang, S.J.;Rho, B.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.758-763
    • /
    • 2001
  • This paper presents twin spray characteristics of two impinging F-O-O-F type injectors in which fuel and oxidizer impinge on each other to atomize under the various conditions. The droplet size and velocity in the impinging spray flow field were measured using a PDPA. The droplet size and velocity were investigated at mixture ratios of 1.5, 2.0, 2.47 and 3.0 for four injectors in which two single F-O-O-F injectors were arranged at intervals of 20.8, 31.2, 41.6 and 62.4mm respectively. In general, the arithmetic mean diameter, SMD and standard deviation of droplet size in the interaction area (X=0 and Y=0mm) were smaller. The axial velocity in the interaction area was slightly higher. Considering the behavior of impinged droplets using the We number calculated by using the axial velocity instead of the relative velocity in line C in Fig. 1(b) for four injectors, it is consumed that the We number over 500 had the possibility to disintegrate, and the We number below 500 had it to cohere after impingement of twin spray. The results of this study can be used for the design of a nozzle for liquid propellant rockets.

  • PDF

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

An Experimental Study on the Break-up Characteristics of Twin-Fluid Nozze According to tile Variations of Feeding Mass-ratio (공급 질량비 변화에 따른 2유체 노즐의 액주분열특성에 관한 실험적 연구)

  • Kang, S.J.;Oh, J.H.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.63-75
    • /
    • 1996
  • The purpose of this study is to investigate the break-up characteristics by taking advantage of a two-phase coaxial nozzle. Air and water are utilized as working fluids and the mass ratio air/water has been controlled to characterize the atomization, diffusion and development of mixing process. By way of a photographic technique, conventional developing structures and diffusion angles have been analyzed systematically with variations of mass ratios. The turbulent flow components of the atomized particles were measured by a two channel LDV system and the data were treated by an on-lined measurement equipment. According to the photographic results the spreading angles decreased because the axial inertia moment was relatively higher than the lateral one with respect to the increase of mass ratio. It is found the jet flow diffuses linearly in a certain limit region while the atomizing characteristics, in terms of the distributions of particle diameters did not show particular differences. It may be expected that these fundamental results can be used as reference data in studying the atomization, breakup and diffusions.

  • PDF

Study on Film Boiling Heat Transfer of Spray Cooling in Dilute Spray Region (희박 분무영역에서의 분무냉각 막 비등 열전달에 관한 연구)

  • Kim Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.279-286
    • /
    • 2005
  • This study presents experimental results on the heat transfer coefficients in the film boiling region of spray cooling for actual metallurgical process. In this study, the heat flux distributions of a two dimensional dilute spray impinging on a hot plate were experimentally investigated. A stainless steel block was cooled down from intial temperature of about $800^{\circ}C$ by twin fluid (air-water) flat spray. It was found from the experimental results that the heat transfer area was classified into the stagnation region and wall-flow region. In the stagnation region, the experimental data of local heat transfer coefficient was closely correlated with the local droplet-flow-rate supplied from the spray nozzle directly. Thus, the local heat transfer coefficients are in good agreement with the predicted values from the correlations proposed by our previous study. In wall-flow region, however, remarkable differences are observed between experimental data and predicted values because the number of rebound droplets increase with increasing the distance from the stagnation point.