• Title/Summary/Keyword: Twin-flow-nozzle

Search Result 45, Processing Time 0.034 seconds

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF

Atomizing Mechanism for a Mist Blower (동력살분무기의 무화기구에 관한 연구)

  • 이상우
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 1996
  • Droplet sizes produced from a mist blower should be adequate to get highly biological effects with a reasonable level of work performance. However the droplet sizes from the conventional nozzles of the mist blower were around VMD 95 to 469$\mu$ which were relatively large as compared with the recommended droplet sizes in liquid flow rate of 17.2 m$/ell$s with air flow rate of 16660$m^3$/s on the maximum travel distance of about 4.0 m. The velocity of air stream at the point where two fluids, air and liquid, impact each other, was tried to maximize as much as possible in order to enhance the atomization performance of a newly designed twin fluid nozzles with the same or better level of performance of the conventional mist blower, The configuration of nozzle orifice should be designed to enlarge the contact area between air and liquid to enhance the atomization.

  • PDF

Comparison between heavy oil combustion test and numerical analysis of combustion phenomena subject to changes in injection characteristics (분무특성에 따른 중유연소 수치해석의 결과와 실험과의 비교)

  • Lee, S.S.;Kim, H.J;Kim, J.J.;Choi, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.338-343
    • /
    • 2003
  • Computations were performed to investigate the spray characteristics of the twin fluid nozzle in three stage heavy-oil combustion burner. The burner geometry and flow conditions were provided by a burner company. The goal of the study is to estimate mean droplet size, initial velocity and spread factor of the nozzle through comparison between experiments and numerical analyses. Air stage ratio is 2:4:4 by mass, and O2 in exhaust gas is about 4 % by volume. Here, the agreement between the experiment and numerical analyses is evaluated by NOx generation. Spray characteristics will be linearly interpolated between fuel consumption rate l20L/h and 240 L/h.

  • PDF

A Study on the Radial Spray Performance of a Plaint-Jet Twin-Fluid Nozzle (액주형 이류체노즐의 반경반향 분무특성에 관한 연구)

  • 최진철;노병준;강신재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.662-669
    • /
    • 1994
  • In the combustion system, the optimum spray conditions reduce the pollutant emission of exhaust gas and enhance the fuel efficiency. The spray characteristics-the drop size, the drop velocity, the number density and the mass flux, become increasingly important in the design of combustor and in testifying numerical simulation of spray flow in the combustor. The purposes of this study are to clarify the spray characteristics of twin-fluid nozzle and to offer the data for combustor design and the numerical simulation of a spray flow. Spatial drop diameter was measured by immersion sampling method. The mean diameter, size distribution and uniformity of drop were analyzed with variations of air/liquid mass flow ratio. The results show that the SMD increases with the liquid supply flow rate and decreases with the air supply velocity. The radial distribution of SMD shows the larger drops can diffuse farther to the boundary of spray. And the drop size range is found to be wider close to the spray boundary where the maximum SMD locates.

A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting (쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구)

  • Ha, Man Yeong;Choi, Bong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

Effect of AC Electric Fields on Flow Instability in Laminar Jets (층류제트유동 불안정성에 미치는 교류 전기장 효과)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • The effect of applied electric fields on jet flow instability was investigated experimentally by varying the direct current (DC) voltage and the alternating current (AC) frequency and voltage applied to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configuration, which occur when AC electric fields are applied. The results indicate that a twin-lifted jet flames originates from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as $O_2+e{\rightarrow}O_2{^-}$ when AC electric fields are applied. This was confirmed by experiments in which a variety of gaseous jets were ejected from a nozzle to which DC voltages and AC frequencies and voltages were applied, with ambient air between two deflection plates connected to a DC power source. Experiments in which jet flows of several gases were ejected from a nozzle and AC electric fields were applied in coflow-nitrogen provided further evidence. The flow instability occurred only for oxygen and air jets. Additionally, jet instability occurred when the applied frequency was less than 80 Hz, corresponding to the characteristic collision response time. The effect of AC electric fields on the overall structure of the jet flows is also reported. Based on these results, we propose a mechanism to reduce jet flow instability when AC electric fields are applied to the nozzle.

A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle) (Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성))

  • Oh, J.G.;Cho, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

Flow characteristics of supersonic twin-fluid atomizers (초음속 2유체 분무노즐의 유동 특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2267-2276
    • /
    • 1996
  • Twin-fluid atomization has been widely used in combustors and process industries because of its high performance and simple structure. Flow visualization and pressure measurements were conducted to investigate the effects of gas flow in twin-fluid atomization. Schlieren photographs showed that changes in atomizing gas pressure, altered the wave patterns, and the lengths of both recitrculating toroid (impinging stangnation point) nad supersonic flow region in the jet. A longer supersonic wave pattern like net-shape wqas observed as atomizing gas pressure increased. The disintegration phenomenon of liquid delivery tube. The variation of spray angles with gas pressures were obtained by visualization using laser sheet beam. Suction pressuresat the nozzle orifice exit and recirculating region are shown to be used to estimate the stable atomization condition of a twin-fluid atomizer.

Spray characteristics and nozzle design experiment to twin-fluid atomizer (이유체 분무기의 분무특성 및 노즐설계 실험)

  • Jeong, Jin-Do;Ji, Pyeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.1941-1947
    • /
    • 1996
  • Droplet size measurement technique was established for the sprayed viscous fluid by virtue of the installation of the sprayed-droplet size measurement system employing light scattering method. Atomization test results showed that the mean droplet size of the sprayed viscous fluid is decreased with the increase of the mass ratio of air to fuel and in case of the same air/fuel ratio, also with the increase of viscous fluid flow rate, and is increased with the distance from atomizer tip. Basic design data for the manufacture of external-mixing type, Y-Jet type, and internal-mixing type atomizers was acquired from the atomization tests.