• Title/Summary/Keyword: Twin-flow-nozzle

Search Result 45, Processing Time 0.032 seconds

The Effect of the Y-jet Nozzle Exit Orifice Shape on Asymmetric Spray (Y-jet 노즐의 출구오리피스 형상이 비대칭 분무에 미치는 영향)

  • Baik, Gwang Yeol;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • Y-jet nozzle has a wide fuel flow rate range and turn-down ratio, thus, it is used in industrial boilers, furnace and agricultural atomizer. However, it has asymmetrical spray characteristics due to the nozzle design factors. Therefore, in this study, asymmetric spraying characteristics of the elliptical Y-jet nozzle was studied by using the lab-scale spray apparatus. As a result, the elliptical Y-jet nozzle had lower gas mass flow rate than circular Y-jet nozzle at same gas pressure, because of bigger shear stress due to the wider inner surface at the elliptical Y-jet nozzle. Larger SMD was measured on the elliptical Y-jet nozzle than the circular Y-jet nozzle. When SMD was measured in the X_Axis direction at the same gas mass flow rate, the elliptical Y-jet nozzle with an aspect ratio of 2:1 showed greater asymmetry than the others.

Experimental Study on the Extinguishing Characteristics of Twin-fluid Nozzle using a Small-scale Hexane Pool Fire (소규모 헥산 풀화재를 이용한 2유체노즐의 소화 특성에 대한 실험적 연구)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Experiments were performed on 140 ml hexane pool fire extinguishment using a twin-fluid nozzle. For this pool fire, the area of the fire source (round shape of 80 mm in diameter) was $0.005027m^2$ and the measured heat release rate was 2.81 kW. The flow rates of water and gas (air and nitrogen) supplied to the twin-fluid nozzle were 156-483 g/min (~0.156-0.483 l/min) and 30-70 l/min, respectively. In the present experimental ranges, the high gas flow rate conditions led to the successful extinguishing of the pool fire. Under the low gas flow rate conditions in the extinguishment regime, the extinguishment time was long and the estimated water consumption was high. Under high gas flow rate conditions, however, the water flow rate conditions did not appear to have a great impact on the extinguishment time and estimated water consumption. On the other hand, in the present experimental ranges, the types of supply gas did not appear to affect the extinguishable flow rate condition, extinguishment time, and estimated water consumption. Finally, using the present experimental results with previous ones using a single-fluid nozzle, the water consumption of twin-fluid and single-fluid nozzles for extinguishing a 140 ml hexane pool fire were preliminarily compared and discussed.

Spray characteristics of effervescent atomizer with internal flows (Effervescent atomizer의 내부 유동에 따른 분무특성)

  • Ku, K.W.;Hong, J.G.;Kim, J.H.;Lee, C.W.;Park, C.D.;Lim, B.J.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

Atomization Characteristics of Effervescent Twin-fluid Nozzle with Different Nozzle Shapes (노즐 형상에 따른 Effervescent 이유체 노즐의 분무특성)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • An experimental study was carried out to investigate the spray characteristics of non-circular effervescent twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and circular nozzle (C) were used. Three types of aerorators with hole diameters of 1.2, 1.7 and 2.1 mm were used. Each aerorator has a total of 12 holes. It is defined by area ratio which is ratio of exit orifice area and aerator hole area. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzles. The discharge coefficients of the three kinds of nozzles were compared with the used in plain orifice's equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 3 times larger. In addition, empirical formula based on ALR, which is the largest variable in Jedelsky's equation, was derived. The droplet sizes(SMD) were found to be smaller in the non-circular shape than in the circular shape, which is concluded to be caused by the difference of the discharge coefficients.

Spray characteristics of twin-fluid atomization using external-mixing sonic nozzles (외부혼합형 음속노즐을 사용한 2유체 미립화의 분무특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.132-139
    • /
    • 1997
  • Spray characteristics of external mixing sonic twin-fluid atomization nozzles are investigated experimentally. Particle sizes are measured by the Fraunhofer diffraction method using the Malvern particle analyzer, and their radial distributions are obtained using the tomographical transformation technique. The spatial distribution of SMD shows that the drop size increases in the radial direction at a fixed liquid flow rate, and the distribution is getting uniform rapidly as the atomizing gas pressure increases. The SMD decreases as the liquid flow rate increases at a fixed GLR. It is found that the atomization efficiency of the flush type sonic nozzle is superior to that of protrusion type. The effect of laser beam diameter of the particle analyzer on the spatial SMD distribution is minor at present experimental conditions.

A Study on Spray Characteristics according to Design Parameters and Pressure Conditions of Industrial Y-jet Nozzle (산업용 Y-jet 노즐의 설계변수 및 압력 조건에 따른 분무특성에 관한 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.137-144
    • /
    • 2019
  • The Y-jet nozzle has benefits such as simple design and wide operating conditions. Because of these benefits, it is used in various combustion devices including industrial boilers. The most important variables in the design of the Y-jet nozzle are the mixing chamber length, the supply diameter of the liquid fuel and gas, and the exit orifice diameter. In addition, because of the use of a twin-fluid, optimized data is required depending on the spray condition. In this study, spray experiment was carried out under the pressure condition of 7 bar or more, which is the spraying condition used in industry. There was no change in flow rate with the length of the Y-jet nozzle mixing chamber, but the difference in SMD was confirmed. Adjusting the exit orifice diameter is most important to achieve the desired flow rate. Changes in the liquid and gas inlet port diameters ratio were found to be help improve the operating range and significant difference in SMD was observed.

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle (비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구)

  • Lee, Sang Ji;Park, Hyung Sun;Hong, Jung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.682-685
    • /
    • 2017
  • An experimental study was carried out to investigate the injection characteristics of non-circular effervescent type twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and one kind of circular nozzle (C) were used. At this time, the Aerorator mounted on the nozzle used three different diameters to match the aspect ratio with the nozzle exit area. Therefore, experiments were performed according to three aspect ratios for each nozzle, and a total experiments were conducted. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzle. The discharge coefficients of the three kinds of nozzles were compared with the conventional equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 4 times larger. The droplet size (SMD) injected from the nozzle was found to be smaller in the non-circular shape than in the circular shape, which is expected to be caused by the difference of the discharge coefficient values.

  • PDF

Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle (Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구)

  • Lee, Sang Ji;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.

A Study on the Effect of Atomization of Pressure Nozzle with Blower - Air (압력식 노즐에서 송풍공기가 미립화에 미치는 영향에 관한 연구)

  • Koh, Kyoung-Han;Lim, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.283-288
    • /
    • 2012
  • This study was undertaken to investigation the spray characteristics of the twin fluid atomization nozzle system. The light oil was injected at the normal temperature and injection pressure was 5 bar - 10 bar by 1 bar and volume flow was 0.5, 1.0 and 2,0 mmH2O(X10-2). We measured the SMD of sprayed droplet to study spray characteristics. The following conclusions were reached from the results of these study. 1. The more injection pressure increased, the more SMD decreased. 2. The more measuring distance between pressure nozzle tip and analyser beam increased, the more SMD increased. 3. SMD of the blower-air-added injection system were shown, increasing volume flow decreased respectively. The result of this study indicated the blower-air-added injection system induced beneficial changes in SMD. And it will be considered important indicator for spray characteristics design and performance evaluation of twin fluid atomization nozzle system.