• Title/Summary/Keyword: Twin-SAW

Search Result 8, Processing Time 0.02 seconds

A Study on the Development of 1 Pool-twin FCAW for One-side Butt Welding in Thick Plates (후판 편면 맞대기 용접을 위한 1 Pool-twin FCAW의 개발에 관한 연구)

  • 박금기;최우현;조상명
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.33-35
    • /
    • 2004
  • 선박건조의 탑재공정에 있어서 용접장이 긴 후판 맞대기 용접에는 SAW가 대부분 적용되고 있지만 컨테이너 운반선의 UPPER DECK나 HATCH COAMING TOP PLATE 같은 경우 용접장이 짧고 작업공간이 협소하여 SAW가 적용되지 못하고 있다. (중략)

  • PDF

Development of an SH-SAW Sensor for Detection of DNA (DNA 측정용 SH-SAW 센서 개발)

  • Hur Youngjune;Pak Yukeun Eugene;Roh Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybridization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators operating at 100 MHz fabricated on $36^{\circ}$ rotated Y-cut $LiTaO_3$ piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the hybridization between target DNA and immobilized probe DNA in pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to $1.55{\cal}ng/{\cal}ml/Hz$.

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

A Study on Sawing and Utilization Structure of Lumber from Small - diameter Logs of Larix leptolepis (낙엽송 소경재(小徑材)의 제재이용구조(製材利用構造)에 관(關)한 연구(硏究))

  • Lee, Choon-Taek;Kim, Su-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.53-68
    • /
    • 1990
  • This research has been executed for maximization of lumber yield and more efficient use of small diameter logs. Sample logs from thinnings carne from densed artificial stands at the Kwangnung Experimental Forests situated in the central region of Korean peninsula. Species of sample logs were obtained to execute sawing and strength test for larch, and lumber strength test in full size for pitch pine and Korean pine. A survey on sawmills consuming domestic logs was carried out to know sawmill production, costs and utilization structure of lumber as a guide to business analysis. Results showed that sawing pattern from small logs less than 15cm in diameter was necessary to cut 9cm by 9cm square per one log in order to obtain high lumber recovery and provide for wide market needs. The total lumber yield of squares plus side boards was 56 percent to 58 percent from small logs and the yield for log sweep in 30 percent decreased by 24.5 percent in sawing production, compared to yield for straight logs. In sawing efficiency, production of lumber by twin band saw could be improved 238 percent higher than lumber of the same species produced by conventional sawmilling methods, and sawing accuracy with twin band saw was much higher at the lumber production than band saw. Lumber from the small larch logs has shown 70 knots per $m^2$ on its faces and also lumber showed lots of face checkings by air drying on the yard, compared to other species. MOR in bending of lumber in full size from small logs of larch was found ranging from 380kg/$cm^2$ to 460kg/$cm^2$, resulting in 40 percent less than the strength from clear small specimens. In lumber containing knots, cross grain, etc, longitudinal stress wave speed was delayed about 48 percent by defects in lumber from both larch and pitch pine logs. The surveyed sample sawmills consumed the domestic logs at the rate of 54 percent to 84 percent in the total timber consumption, showing high consumption at mills located in the mountains.

  • PDF

Recycled Polypropylene (PP) - Wood Saw Dust (WSD) Composites : The Effect of Acetylation on Mechanical and Water Absorption Properties

  • Khalil, H.P.S.A.;Shahnaz, S.B. Sharifah;Ratnam, M.M.;Issam, A.M;Ahmad, Faiz;Fuaad, N.A Nik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.10-21
    • /
    • 2006
  • Recycled polypropylene (RPP) - Wood Saw Dust (WSD) composites with and without acetylation of filler were produced at different filler loading (15%, 25%, 35% and 45% w/w) and filler size (300, 212 and $100{\mu}m$). The RPP-WSD was compounded using a Haake Rheodrive 500 twin screw compounder at $190^{\circ}C$ at 8 MPa for 30 minutes. The mechanical properties and water absorption properties of modified and unmodified WSD-PP composites were investigated. Acetylation of WSD improved the mechanical and water absorption characteristic of composites. The decrease of filler size (300 to $100{\mu}m$) of the unmodified and acetylated WSD showed increase of tensile strength and impact properties. The composites exhibited higher tensile modulus properties as the filler loading increased (15% to 45%). However tensile strength, elongation at break and impact strength showed the opposite phenomenon. Water absorption increased as the mesh number and filler loading increased. With acetylation, lower moisture absorption was observed as compared to unmodified WSD. The failure mechanism from impact fracture of the filler-matrix interface with and without acetylation was analyzed using Scanning Electron Microscope (SEM).

The Study on development of a SAW SO$_2$ gas sensor (표면탄성파를 이용한 아황산 가스센서 개발에 관한 연구)

  • Lee, Young-Jin;Kim, Hak-Bong;Roh, Yong-Rae;Cho, Hyun-Min;Baik, Sung;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • A new type SO$_2$ gas sensor with a particular inorganic thin film on SAW devices was developed. The sensor consisted of twin SAW oscillators of the center frequency of 54 MHz fabricated on the LiTaO$_3$ piezoelectric single crystal. One delay line of the sensor was coated with a CdS thin film that selectively adsorbed and desorbed SO$_2$, while the other was uncoated for use as a stable reference. Deposition of the CdS thin film was carried out by the spray pyrolysis method using an ultrasonic nozzle. The sensor could measure the concentration in air less than 0.25 parts per million of SO$_2$. Stability of the sensor turned out to be as good as less than 20ppm, recovery time after each measurement was as short as 5 minutes. Repeatability of the measurement was confirmed through so many reiterated experiments. Hence, the SAW sensor developed through this work showed promising performance as a microsensing tool of SO$_2$. Further work required to improve the performance of the sensor includes enhancement of the reactivity of the CdS thin film with SO$_2$ through appropriate dopant addition, an increase of the center frequency of the SAW device.

  • PDF

Structural defects in the multicrystalline silicon ingot grown with the seed at the bottom of crucible (종자결정을 활용한 다결정 규소 잉곳 내의 구조적 결함 규명)

  • Lee, A-Young;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • Because of the temperature gradient occurring during the growth of the ingot with directional solidification method, defects are generated and the residual stress is produced in the ingot. Changing the growth and cooling rate during the crystal growth process will be helpful for us to understand the defects and residual stress generation. The defects and residual stress can affect the properties of wafer. Generally, it was found that the size of grains and twin boundaries are smaller at the top area than at the bottom of the ingot regardless of growth and cooling condition. In addition to that, in the top area of silicon ingot, higher density of dislocation is observed to be present than in the bottom area of the silicon ingot. This observation implies that higher stress is imposed to the top area due to the faster cooling of silicon ingot after solidification process. In the ingot with slower growth rate, dislocation density was reduced and the TTV (Total Thickness Variation), saw mark, warp, and bow of wafer became lower. Therefore, optimum growth condition will help us to obtain high quality silicon ingot with low defect density and low residual stress.