• Title/Summary/Keyword: Twin side-by-side Tunnel

Search Result 10, Processing Time 0.026 seconds

Model Tests Investigating the Ground Movements Associated with Twin Side-by-Side Tunnel Construction in Clay (점성토 트윈 병렬 터널로 인한 지반침하 연구를 위한 모형실험)

  • Ahn, Sung-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.77-85
    • /
    • 2009
  • This paper describes the findings obtained from a research project aimed at investigating, via 1 g laboratory model tests, the ground movements caused by multiple side-by-side (sbs) tunnel construction in clay. The ground movements above a second tunnel showed different trends from those observed above a first tunnel. These trends include an increase in the overall volume loss, and a widening of the settlement troughs on the near limb of the trough accompanied by a shift of the maximum settlement towards existing tunnel. This would suggest that the use of simple predictive methods of adopting a Gaussian curve for analysing the ground settlements associated with twin (sbs) tunnel construction is not appropriate. Therefore the current paper adopts a method that modifies the Gaussian curve approach in order to improve the predictions. This paper comments on the parameter selection involved with adopting this new method to apply it to full-scale field situations, and also discusses its limitations.

Analysis of surface settlement troughs induced by twin shield tunnels in soil: A case study

  • Ahn, Chang-Yoon;Park, Duhee;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.325-336
    • /
    • 2022
  • This paper analyzes the ground surface settlements induced by side-by-side twin shield tunnels bored in sedimentary soils, which primarily consist of sand with clay strata above the tunnel crown. The measurements were obtained during the construction of twin tunnels underneath the Incheon International Airport (IIA) located in Korea. The measured surface settlement troughs are approximated with Gaussian functions. The trough width parameters i and K of the settlement troughs produced by the first and second tunnel passings are determined, along with those for the total settlement trough. The surface settlement troughs produced by the first shield passing are reasonably represented by a symmetric Gaussian curve. The surface settlement troughs induced by the second shield tunnel display marginal asymmetric shapes at selected sections. The total settlement troughs are fitted both with a shifted symmetric Gaussian function and the superposition method utilizing an asymmetric function for the incremental trough produced by the second tunnel. It is revealed that the superposition method does not always produce better fits with the total settlement. Instead, the shifted symmetric Gaussian function is overall demonstrated to provide more favorable agreements with the recordings. Therefore, the shifted symmetric Gaussian function is recommended to be used in the design for the prediction of the settlement in clays caused by twin tunneling considering the simplicity of the procedure compared with the superposition method. The amount of increase in the width parameter K for the twin tunnel relative to that for the single tunnel is quantified, which can be used for a preliminary estimate of the surface settlement in clay induced by twin shield tunnels.

Parallel tunnel settlement characteristics: a theoretical calculation approach and adaptation analysis

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Abd Elmageed, Ahmed
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.225-237
    • /
    • 2022
  • Settlement evaluation is important for shallow tunnels in big cities to estimate the settlement that occurs due to the excavation of twin tunnels. The majority of earlier research on analytical solutions, on the other hand, concentrated on calculating the settlement for a single tunnel. This research introduces a procedure to evaluate the settlement induced by the excavation of twin tunnels (two parallel tunnels). In this study, a series of numerical analysis were performed to validate the analytical solution results. Two geological conditions were considered to derive the settlement depending on each case. The analytical and numerical methods were compared, which involved considering many sections and conducting a parametric study; the results have good agreement. Moreover, a comparison of the 3D flat model and 2D (FEM) with the analytical solution shows that in the fill soil, the maximum settlement values were obtained by the analytical solution. In contrast, the values obtained by the analytical solution in the rock is more conservative than those in the fill. Finally, this method was shown to be appropriate for twin tunnels dug side by side by utilizing finite element analysis 3D and 2D (PLAXIS 3D and PLAXIS 2D) to verify the analytical equations. Eventually, it will be possible to use this approach to predict settlement troughs over twin tunnels.

Semi-empirical Approach to Investigate Tunnelling-induced Ground Movements and their Effects on at-grade Rail Track in Twin Side-by-side Tunnel Layouts (병렬터널 배치에서 터널 굴착이 기존 철도 선로에 미치는 영향에 관한 반경험적 접근)

  • Sung Kwon Ahn;Dae Sang Kim;Yun Suk Kang;Tae-Hoon Kim
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.543-553
    • /
    • 2024
  • There has been increased interest, media coverage, and debate over constructing new underground structures to replace existing at-grade rail tracks. This new scheme aims to free up space to provide cities with room for more housing with green amenities. Due to urbanisation, tunnel engineers have encountered greenfield ground conditions in cities on only a few occasions. However, the new scheme provides opportunities to investigate a unique scenario where new tunnels are driven parallel to the existing rail tracks on the surface with little ground cover in soft ground. This paper presents findings obtained from a semi-empirical approach that aims to investigate the likely track irregularity associated with tunnelling-induced ground movements. This paper presents contour maps that show track rotation according to the relative position of the new tunnel and existing rail tracks. Tunnel engineers would consult these maps for their tunnel route design for the scheme.

On the Cautious blasting pattern of Weak zone of NAMSAN NO. twin Tunneling (남산1호터널 쌍굴 굴진공사 정밀발파 작업에 대한 안전도검토)

  • Huh, Ginn
    • Explosives and Blasting
    • /
    • v.8 no.4
    • /
    • pp.3-22
    • /
    • 1990
  • The $\varphi{4.5}$ meters pilot tunneling work is almost done to the $\varphi{11.3}$ meters twin tunnel of NAM SAN No1. The south side pit of 400 meters is weak zone of Rock status, so client request us to allow the cautious blasting pattern for drilling on the condition of 0.2 kine vibration allowance limited for the safety of side running tunnel. The pattern of cautious blasting carried out by 6 time divided fiving on the round drilling depth of 1.20 meters(1.10) and also applied control blasting method with line drilling due to the reduction of vibration.

  • PDF

Hard rock TBM project in Eastern Korea

  • Jee, Warren W.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • The longest tunnel has been halted at Daekwanryung by the failure of the host country of the Winter Olympiad in 2014, but modern High-Power TBM will come to Korea to excavate these long tunnels to establish the better horizontal connection between the western and eastern countries to improve the strong powerful logistic strategy of Korean peninsula. Train operation provides a key function of air movements in a long underground tunnel, and heat generation from transit vehicles may account of the most heat release to the ventilation and emergency systems. This paper indicates the optimal fire suppress services and safety provision for the long railway tunnel which is designed twin tunnel with length 22km in Gangwon province of Korea. The design of the fire-fighting systems and emergency were prepared by the operation of the famous long-railway tunnels as well as the severe lessons from the real fires in domestic and overseas experiences. Designers should concentrate the optimal solution for passenger's safety at the emergency state when tunnel fires, train crush accidents, derailment, and etc. The optimal fire-extinguishing facilities for long railway tunnels are presented for better safety of the comfortable operation in this hard rock tunnel of eastern mountains side of Korea. Since year 1900, hard rock tunnel construction has been launched for railway tunnels in Korea, tunnels have been built for various purposes not only for infrastructure tunnels including roadway, railway, subway, and but also for water and power supply, for deposit food, waste, and oils etc. Most favorable railway tunnel system was discussed in details; twin tunnels, distance of cross passage, ventilation systems, for the comfortable train operations in the future.

  • PDF

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

Aerodynamic characteristics investigation of Megane multi-box bridge deck by CFD-LES simulations and experimental tests

  • Dragomirescu, Elena;Wang, Zhida;Hoftyzer, Michael S.
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.161-184
    • /
    • 2016
  • Long-span suspension bridges have evolved through the years and with them, the bridge girder decks improved as well, changing their shapes from standard box-deck girders to twin box and multi-box decks sections. The aerodynamic characteristics of the new generation of twin and multiple-decks are investigated nowadays, to provide the best design wind speeds and the optimum dimensions such bridges could achieve. The multi-box Megane bridge deck is one of the new generation bridge decks, consisting of two side decks for traffic lanes and two middle decks for railways, linked between them with connecting beams. Three-dimensional CFD simulations were performed by employing the Large Eddy Simulation (LES) algorithm with a standard Smagorinsky subgrid-scale model, for $Re=9.3{\times}10^7$ and angles of attack ${\alpha}=-4^{\circ}$, $-2^{\circ}$, $0^{\circ}$, $2^{\circ}$ and $4^{\circ}$. Also, a wind tunnel experiment was performed for a scaled model, 1:80 of the Megane bridge deck section, for $Re=5.1{\times}10^5$ and the aerodynamic static coefficients were found to be in good agreement with the results obtained from the CFD-LES model. However the aerodynamic coefficients determined individually, from the CFD-LES model, for each of the traffic and railway decks of the Megane bridge, varied significantly, especially for the downstream traffic deck. Also the pressure distribution and the effect of the spacing between the connecting beams, on the wind speed profiles showed a slight increase in turbulence above the downstream traffic and railway decks.

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.