• Title/Summary/Keyword: Twin propulsion ship

Search Result 19, Processing Time 0.023 seconds

Prediction of Maneuverability of a Ship with POD Propulsion System (POD 추진기선의 조종성능 추정 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Park, Young-Ha;Yu, Byeong-Seok;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.164-170
    • /
    • 2006
  • To improve ship's maneuverability and carry out special goal POD propulsion system was equipped as propulsion and maneuvering system. To predict the maneuverability of a ship with POD propulsion system HPMM tests and POD open water test are carried out. In this paper modular model with 4 degree of freedom of a ship with twin POD propulsion system is presented. To use modular model the forces of POD propulsion system are measured separately from the hull forces. The measured forces and moments are analyzed by using modular model and whole ship model The simulation results of modular model are compared with those of whole ship model. From the present study it is Possible to analyze HPMM tests of a ship with twin POD propulsion system by modular model.

The Stern Hull Form Design using the Flow Analysis around Stern Skeg (선미 스케그 주위의 유동 분석에 의한 선미 형상 설계)

  • Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • The optimized distance between skegs and angle of the skeg for a standard twin-skeg type LNG carrier were presented using the CFD and model tests. The evaluation method of self-propulsion performance was derived based on the results of CFD and confirmed the validity through model tests. The analyses to assess self-propulsion performance using CFD were shown by flow line patterns on the skeg surface, nominal wake distribution in the propeller plane and the evaluation for flow balance around stern skegs. The optimized ship that was applied to the optimized two design parameters in stern skeg arrangement for target ship was derived in this work. Finally speed performance of mother ship which is existing ship and optimized ship were compared through CFD and model tests. And the usefulness about the evaluation method of self-propulsion performance was reconfirmed.

A study of an Architecture of Digital Twin Ship with Mixed Reality

  • Lee, Eun-Joo;Kim, Geo-Hwa;Jang, Hwa-Sup
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.458-470
    • /
    • 2022
  • As the 4th industrial revolution progresses, the application of several cutting-edge technologies such as the Internet of Things, big data, and mixed reality (MR) in relation to autonomous ships is being considered in the maritime logistics field. The aim of this study was to apply the concept of a digital twin model based on Human Machine Interaction (HMI) including a digital twin model and the role of an operator to a ship. The role of the digital twin is divided into information provision, support, decision, and implementation. The role of the operator is divided into operation, decision-making, supervision, and standby. The system constituting the ship was investigated. The digital twin system that could be applied to the ship was also investigated. The cloud-based digital twin system architecture that could apply investigated applications was divided into ship data collection (part 1), cloud system (part 2), analysis system/ application (part 3), and MR/mobile system (part 4). A Mixed Reality device HoloLens was used as an HMI equipment to perform a simulation test of a digital twin system of an 8 m battery-based electric propulsion ship.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.

Patent Technology Map Analysis and Technology Policy Futrure Ship (차세대선(次世代船)의 기술 및 특허분석 현황)

  • 최현구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.3
    • /
    • pp.46-51
    • /
    • 2001
  • Patent Technology Map analysis of future ship type. Example ship type : Hydrofoil Craft. Air Cushion Vehicle Surface Effect Ship, Twin Hull Ship, Wing In Ground Effect Ship, Elelctrial Propulsion Ship, Icebreaking Ship, Submarine, LNG Ship Conclusion of future shipbuilding Technology Policy

  • PDF

Twin Skeg Hull Form on a 222,000 DWT VLBC (222,000 DWT 쌍동 선미 선형의 개발 보고)

  • D.K.,Kim;D.S.,Kang;H.T.,Hong;T.W.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.53-70
    • /
    • 1987
  • The world's largest twin skeg VLBC developed at Samsung shipyard for BHP, Austrailian owner, has been proven as a successful vessel through 1 year's operation record in view of the superior propulsion performances, maneouverability in extremely shallow water and all ship's systems, especially, ship's vibration. The principal technical matter during the design development from the initial design stage to the sea trial has been summarized on this report.

  • PDF

A Numerical Study on the Maneuverability of a Twin-Screw LNG Carrier under Single Propeller Failure (쌍축 추진 LNG선의 단독 추진기 고장 상태에서의 조종성능에 대한 수치적 연구)

  • You, Youngjun;Choi, Jinwoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.204-214
    • /
    • 2017
  • Recently, ship owners have been requiring the assessment of the maneuverability of a twin-screw ship under machinery failures. In this paper, we are only focused on the propulsion failure among propulsion failure, power supply failure, steering system failure etc. First of all, the mathematical model for the twin-screw 174K LNGC is verified by comparing the simulated results for $35^{\circ}$ turning test, $10^{\circ}/10^{\circ}$ zigzag test and $20^{\circ}/20^{\circ}$ zigzag test under normal operating condition and those obtained from free running model tests. And, sea trial results of 216K LNGC under single propeller failure are compared with those of 174K LNGC under identical condition to verify the proposed method to predict maneuverability under single propeller failure. After the straight line maneuver is simulated under the single propeller failure, the speed and equilibrated heading and rudder deflection angles at steady state are predicted. After the IMO maneuvering tests are simulated under the single propeller failure, the results are reviewed to investigate the maneuvering characteristics due to the failure.

CFD Simulation of the Self-propulsion of a damaged Car Ferry in Waves (손상된 카페리 선박의 파랑중 자항상태 CFD 해석)

  • Kim, Je-In;Park, Il-Ryong;Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2019
  • This paper provides the numerical results for the self-propulsion performance in waves of a car ferry vessel with damage in one of its twin-screw propulsion systems without flooding the engine room. The numerical simulations were carried out according to the Safe Return to Port (SRtP) regulation made by the Lloyd's register, where the regulation requires that damaged passenger ships should have an ability to return to port with a speed of 6 knots in a Beaufort 8 sea condition. For the validation of the present numerical analysis study, the resistance performance and the self-propulsion performance of the car ferry in intact and damaged conditions in calm water were calculated, which showed a satisfactory agreement with the model test results of Korea Research Institute of Ship and Ocean engineering (KRISO). Finally, the numerical simulation of self-propulsion performance in waves of the damaged car ferry ship was carried out for a normal sea state and for a Beaufort 8 sea state, respectively. The estimated average Brake Horse Power (BHP) for keeping the damaged car ferry ship advancing at a speed of 6 knots in a Beaufort 8 sea state reached about 47% of BHP at MCR condition or about 56% of BHP at NCR condition of the engine determined at the design state. In conclusion, it can be noted that the engine power of the damaged car ferry ship in single propulsion condition is sufficient to satisfy the SRtP requirement.

FMEA of Electric Power Management System for Digital Twin Technology Development of Electric Propulsion Vessels (전기추진선박 디지털트윈 기술개발을 위한 전력관리시스템 FMEA)

  • Yoon, Kyoungkuk;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1098-1105
    • /
    • 2021
  • The International Maritime Organization has steadily strengthened environmental regulations on nitrogen oxides and carbon dioxide emitted from marine vessels. Consequently, the demand for electric propulsion vessels based on eco-friendly elements has increased. To this end, research and development has been steadily conducted for various vessels. In electric propulsion systems, a redundancy configuration is typically adopted to increase reliability and facilitate the onboard arrangement. Furthermore, studies have been actively conducted to ensure the safety of electric propulsion systems through the combination with digital twin technology. A digital twin can be used to predict outcomes in advance by implementing real-world equipment or space in a virtual world like twins, integrating real-world information and data with the virtual world, and performing computer simulations of situations that can occur in a real environment. In this study, we perform failure modes and effects analysis (FMEA) to validate the electric power management system (PMS) redundancy scheme for the digital twin technology development of electric propulsion vessels. Then, we propose the role and algorithm of PMS as a compensation function for preventing primary and secondary damages caused by a single equipment failure of the PMS and preventing additional damages by analyzing the impact on the entire system under real vessel operating conditions based on the redundancy FMEA suggested for the ship classification and certification. We verified the improvement in propulsion conservation through tests.