• Title/Summary/Keyword: Turning Basin

Search Result 26, Processing Time 0.03 seconds

A Study on the Size of Turning Basin for Vessels of Arrival & Departure in the Berths (부두 입출항 선박을 위한 선회수역 크기에 관한 고찰)

  • Kim, Se-Won;Lee, Yoon-Suk;Park, Young-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.6
    • /
    • pp.872-883
    • /
    • 2012
  • Generally the determination of turning basin for vessels of entering & sailing in the berth has been considered in the design standard of harbor construction rules of the port. In this regard, the turning basin has been determined by the max size of entering vessel of the berth/port. But the size of turning basin may considered the ship's maneuvering ability, operator's skillful power, mooring equipments of the berth, arrangement of the fairway and the environment condition of weather & seas around the designated port area. So this paper suggested the optimum size of turning basin after studying the harbour design rules of the advanced marine countries and using by maneuvering simulator for turning basin size and also evaluated the design standard of harbor construction rules and minimum size of turning basin against ship's length at the Gangjung civil/naval port of Jeju Island.

Hydrodynamic Evaluation Method for Developing the Inflatable Kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가 기법)

  • Ki, Jae-Seok;Hah, Chong-Ku;Jang, Ho-Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.627-634
    • /
    • 2012
  • This study includes results of basin test for hydrodynamic performance evaluation with a developed inflatable kayak. Inclining experiment and turning trial experiment of the developed inflatable kayak and an abroad product were carried out in the Ocean engineering Basin. Resistance test was carried out by using downscale model in the circulating water channel. Through method of following performance evaluation, advantage and disadvantage of the developed inflatable kayak were compared with those of the abroad product.

Hydrodynamic evaluation for developing the inflatable kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가)

  • Hah, Chong-Ku;Lim, Lee-Young;Ki, Jae-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.623-630
    • /
    • 2013
  • This study was to evaluate hydrodynamic performance evaluation between an abroad product, a developed inflatable kayak and new developed kayaks. In order to test, inclining and turning trial test were carried out in the Ocean engineering Basin. Also, resistance test was carried out using a reduced scale model in the circulating water channel. In conclusion, stability of KONA was evaluated was the most greatest, the coefficient of resistance and center of gravity from RD-FK-12 were considerable, and turning performance of RD-FK-11 was greater than this of KONA and RD-FK-12.

Hydrodynamic Evaluation for Developing the New Inflatable Kayak (신형 인플래터블 카약 개발을 위한 유체역학적 성능평가)

  • Hah, Chong-Ku;Kim, Ho;Lim, Lee-Young;Ki, Jae-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.334-341
    • /
    • 2015
  • This study is to evaluate hydrodynamic performance evaluation between three kinds of inflatable kayaks, that is, a frame kayak, a needle knife kayak, and a v-hull kayak. In order to test, inclining and turning trial test are performed in the Ocean Engineering Basin. Also, a resistance test is performed with a reduced scale kayak in the circulating water channel. Consequently, First, the moment arm of a v-hull kayak is the largest with 132.4mm, but turning radius of one was the smallest of them. Second, the resistance of a needle knife kayak is the smallest with 71N, the center of gravity of one was the lowest with 0.128m of them, and then needle knife kayak occurs in a draft overall. Consequently, the v-hull kayak has had the advantages on restoring force and turning performance than others. The needle knife kayak has been more excellent on resistance and center of gravity than others.

One-way Through Port from the Viewpoint of Reduction of Ship′s Maneuvering Stress (선박운항자의 조종부하경감을 위한 일방통항형 항만에 관한 연구)

  • Keum, Jong-Soo;Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.383-388
    • /
    • 2003
  • .Ports are usually designed as a dead en port. With an increasing tendency of ship size, the problems such as maneuvering difficulty, turning basin, tugboat fee, etc. are getting to be pointed out. For solving such problem, the conversion of the idea fro dead end port to one-way through port is encourage. To examine the advantage of one-way through port, a quantitative and systematic analyzing procedure is needed. For this, this paper evaluated the preference on the three way of departture using the fuzzy measure and integral model.

A Study on the Optimal Waterway System of Port (港灣의 最適入出港線路 시스템에 關한 硏究)

  • 구자윤;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.1
    • /
    • pp.65-75
    • /
    • 1992
  • The Waterway System for the Very Large Ships is One of the Important System connected between Marine Transport System and Exclusive Terminal. This study analyzed the Turning Configurations and Placement of Fairway Buoys in Waterway at the Port of Kwangyang to make Optimal Suggestion of for Ship's Safe Navigation. The following Conclusions are drawn : 1) In Area Section A, Starboard hand Buoy No14 should be changed its Location and Light Rhythms, and Buoy Nos.13 '||'&'||' 16 are required their Light Rhythms to be changed. 2) Especially in Area Section B located before the Turning Basin, The Location and Light Rhythms of Nos.20 '||'&'||' 22 buoys at Starboard Hand should be changed, Port Hand No.21 also should be done, and East Cardinal Buoy located between Nos.21and 23 should be changed its Light Rhythms, or removed if possible. 3) Buoy no.19 of Lateral Port Hand in Section B should be changed "Preferred Channel to Startboard" to distinguish Main Channel from Secondary One.

  • PDF

A Study on the Improvement Measures for the Safe Maneuvering of Passenger Ships in Port Area through Analysis of Marine Accidents (여객선 해양사고 분석을 통한 안전한 항내조선 개선방안에 관한연구)

  • Chong, Dae-Yul
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • MOF strengthen the law and institutions for safety management after the capsize accident of passenger ship "Sewol" on April 16, 2014. Nevertheless, about 13 cases of marine accidents such as collisions, contact, and stranding have occurred in coastal passenger ships over the past 5 years. Particularly, according to the judgment of KMST, most of the main causes of passenger ship accidents occurred within harbor areas because of the master's improper ship-handling or inattention. And so, this study analyzed four cases of marine accidents on passenger ships that occurred in the port areas and examined the environmental, institutional, material, and human factors that contributed to the master's improper ship-handling and behavior, and the results are as follows. First, as an environmental factor, the size of the turning basin was not enough. Second, as an institutional factor, the VTS control was not properly supported, the master lacked sufficient training for safe ship-handling in the port area and up-to-date charts were not provided. Third, as a material factor, the digital type speed log capable of the ship's speed in real-time was not installed on the ship's wing bridge. Lastly, as a human factor, the master could not take proper bridge resources and the passage plan was not proper. Therefore, it is suggested in this paper that the size of the turning basin should be adjusted to meet the prescribed standards, the master of passenger ships should receive the ship-handling simulation training among other safety training to ensure safe ship-handling of the master in the port area as improvement measures.

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Hydropower Development and Sustainability in the Mekong River Basin

  • Lee, Seung-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.37-37
    • /
    • 2012
  • The study aims to evaluate the complexity of relationships between the riparian states - China, Myanmar, Laos, Thailand, Vietnam and Cambodia - in the Mekong River Basin since the mid-1990s with special reference to the discourse on hydropower development. A special emphasis will be put on the influence of China on hydropower development. Although a variety of issues on the river basin have been discussed among the riparian states, none of them has been effectively implemented owing to the lack of China's commitment to the discussions for sustainable water management. Now, a new turning point is observed in the region with emergence of the issue on hydropower development, not only in the upper basin but also in the lower basin. The discourse on hydropower in Mekong has quickly drawn attention of the public, accelerated by the onset of construction of the Xayabury Dam in Laos since November 2010. The influence of China as the upstream country with its political, economic, and military power has increasingly grown in the region over the last few decades, and such trend recently intensifies together with an expansion of Chinese commercial interests in the region. Since the establishment of the Mekong River Commission (MRC) in 1995, the four MRC members have striven to push forward a sustainable use of water resources in the basin. But the legitimacy of the MRC system has been eroded due to the lack of participation by Myanmar and China, and in particular, the Chinese absence has made the four riparian states blind about the change of water regime due to the Chinese dams upstream. Environmental damages due to hydropower development might be possible, including a drop of fish yields, crop production, and damages to the river's ecosystems. Vietnam and Cambodia have already expressed their concerns over the dam construction towards China as well as Laos by pointing out detrimental impacts of the dams to their economies. China's move to collaborate with the other riparian states since 2010 has given a positive signal in terms of sustainable water management in the river. However, this phenomenon never confirms China's proactive contribution to the cooperative activities within the framework of the MRC system. Laos' initiative to build a new dam in the lower basin alarms those who are opposed to dam construction in the fear of its far-reaching damages to the environment. The question goes back to the year-long debate on policy priorities given to economic growth or the environment. The riparian states require wisdom based on a consensus about sustainable water use rather than hydropower development based on individual growth dreams.

  • PDF

A Study on the evaluation of the safety of berthing maneuver by the Analytic Hierarchy Process (계측분석법에 의한 선박 접리안 안전성의 평가방안)

  • 구자윤;이철영;우병구;전상엽
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.33-47
    • /
    • 1994
  • On developing port system, the performance tests of system in relation to ship maneuver generally consists of the three parts: the channel transit, the manoeuvring in a turning basin and the docking/undocking. The quantifications of risk of an accident has priviously been difficult due to the low occurrence of accidents relative to the number of transits. Additionally, accident statistics could not be related port system because of the large number of factors contributing to the accident. such as human error, equipment failure, visibility, light, traffic. etc. In case of the channel transit, "Relative Risk Factor(RRF)" or "Relative Risk Factor for Meeting Traffic" was proposed as the as the measures derived to quantify the relative risk of accident by M.W.Smith. This factor measure the tracking performance, the turning performance and the passing performance at meeting traffic. On the other hand, the safety of berthing maneuver is not measured with a few evaluating factors as controlled due to complex controllabilites such as steering, engine, side thrusters or tugs. This work, therefore, aims to propose the evaluating measure by the Analytic Hierarchy Process(AHP). Six experimental scenarios were establised under the various environmental conditions as independent variables. In every simulation, the difficulty of maneuver was scored by captain and compared with AHP scores. The results show almost same and from which the weights of eight evaluating factors could be fixed. Additionally, the limit value of relative factor in berthing safety to six scenarios could be estimated to 0.11.e estimated to 0.11.

  • PDF