• Title/Summary/Keyword: Turn Signal

Search Result 311, Processing Time 0.025 seconds

Right-Turn Traffic Operation at Signalized Intersections (신호교차로에서 우회전교통류 운영방안)

  • KIM, Youngchan;KWON, Minyoung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.1
    • /
    • pp.79-89
    • /
    • 2017
  • The purpose of this study is to analyze the current right-turn operation at signalized intersections and suggest appropriate right-turn operation strategy. From field investigation, right-turn signals have not only operated various type and shape, lacking of consistency, but also there was no clear regulations or standards. It could increase drivers' confusion and cause vehicle-to-pedestrian accidents. In order to improve pedestrian safety, there is urgent need to study the regulations and standards regarding to right-turn traffic control. This study suggests appropriate right-turn signal operation strategy. In case of permissive right-turn operation, it should be stated on regulations that red light means right-turn vehicles must stop temporarily at the stop line and then turn right. Necessary conditions for installing right-turn signal for protected operation are that there should have one or more exclusive right-turn lanes and right-turn signal face should contain the lenses with three-color arrow indication. In addition, we assort right-turn operation types as permissive, protected and protected/permissive right-turn and suggest specific signal operation strategy by the types.

A Study on Left-turn Queues Analysis using Queueing Theory under Permissive Left-turn Signal System (비보호좌회전 신호체계운영에 따른 좌회전 대기행렬분석에 관한 연구)

  • Kim, Kap Soo;Jung, Ja Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.663-669
    • /
    • 2011
  • In this study, the optimal length of left-turn lane in permissive left-turn signal system at the signalized intersection which has a left-turn bay is estimated. It is a simulation analysis using the queueing theory that estimate the length of left-turn lane. Traffic density conform to the standards of operating a permissive left-turn system of the Practical Manual Traffic Safety Facilities. And each of a left-turn arrival rate, a left-turn service rate, left-turn average queueing time, for green time average queueing vehicle, for red time average queueing vehicle and average queueing vehicle cycle is calculated. As a result of this study, we would learn how much the space should be secured at the signalized intersection which has a left-turn bay. The methodology using the queueing theory to work out the optimal length of waiting lane in the permissive left-turn signal system was presented.

The Switching Characteristics of Series-Connected Power Transistors (전력용 트랜지스터의 직렬연결시 스윗칭 특성)

  • 서범석;이택기;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.600-606
    • /
    • 1992
  • The series connection of power switching semiconductor elements is essential when a high voltage converter is made, so researches are being conducted to further develop this technology. In the series connection of power switching semiconductor elements, the main problem is that simultaneous conduction at turn-on and simultaneous blocking at turn-off together with voltage balancing are unattainable because of the difference of their switching characteristics. In this paper a novel series connection algorithm is proposed, which can implement not only the synchronization of the points of turn-on and turn-off time but the dynamic voltage balancing in spite of the difference of each switching characteristics. The proposed method is that the compensated control signal is attained from the voltage feedback signal and applied to the series-connected power transistors independently. Computer simulation and experimental results verify its validity.

  • PDF

Position of Intersection Recognition and Tum Signal Operation Approaching at Target Intersection (교차로 인지와 방향지시등 조작 지점에 관한 검토)

  • Jeon, Yong-Wook;Tatsmu, Daimon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.65-70
    • /
    • 2009
  • In-vehicle route guidance information(RGI) systems have been developed with the advancement of the information and communication technologies. However, the RGI is provided by a pre-determined option, drivers occasionally pass the target intersection owing to non- or late- recognizing it. The purpose of this experiment is to examine the position of driver's tum signal operation and intersection recognition approaching at the target intersection which is difficult to identify as a preliminary research on developing the additional RGI connecting with the tum signal control. The field experiment was conducted to measure distances of the turn signal operation and intersection recognition from the target intersection according to driving lanes and landmarks at adjacent intersection. And, glance behavior to the car navigation display was evaluated by using an eye camera. The results indicate that drivers operate the turn signal after confirming a landmark in the case of the intersection with it. However, most case of driving, drivers operate the tum signal at 40 to 50m before coming to the target. To provide the additional RGI, when drivers do not operate the tum signal approaching at the target intersection based on the results, is expected to improve the traffic safety and the comfort for drivers.

Comparison of Capacities at an Intersection with Lagging or Leading Left Turn Green Phase (직진(直進)과 좌회전(左回轉) 신호순서(信號順序)에 따른 교차로(交叉路) 용량분석(容量分析)과 신호시간(信號時間) 연구(硏究))

  • Do, Cheol Ung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.19-26
    • /
    • 1983
  • Through traffic utilization of left turn lane constitutes an unique traffic operation at an intersection. Consequently, due to the provision as of current practice, conventional methods which estimate traffic volume and intersection capacity by lane would not be valid for design of signal timings. Through traffic utilization factor of left turn lane is affected by left turn volume and signal timings. The primary purpose of this study is to compare the results from leading left turn green phasing scheme with those from previously studied lagging left turn green phasing scheme in terms of utilization factor and intersection capacity by various left turn volume and signal timings, and thereby optimum signal timing to maximize the capacity at given left turn volume. Leading left turn green phasing increases capacity by 10~15 % as compared with that for current lagging left turn green phasing scheme. The range of optimum cycle length for left turn volume about 150 vph is 180~200 second. This cycle length range and left turn interval are longer than those for the lagging left turn green phasing scheme.

  • PDF

Assessment of Bicycle Left-turn Traffic Control Strategies at Signalized Intersections (신호교차로의 자전거 좌회전 운영방안 평가에 관한 연구)

  • Lee, Chung Min;Lee, Sang Soo;Cho, Hanseon;Nam, Doohee
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.579-588
    • /
    • 2014
  • In this study, three signal control strategies such as Bike box, Hook-turn, and 6-phase were assessed for various traffic conditions at signalized intersections incorporating bicycle left-turn traffic. Results showed that the size of a waiting zone mainly affected the performance of signal control in both Bike box and Hook-turn. Both Bike box and Hook-turn yielded an identical vehicle delay, but Bike box produced less bicycle delay than Hook-turn by 2.5~29.9 sec/veh for undersaturated traffic conditions. For saturated traffic condition, Bike box produced less vehicle delay than Hook-turn and 6-phase strategies, but bicycle delay was found to increase at the 700 vph of bicycle traffic compared to 6-phase. Bicycle delay was greatly increased under Hook-turn and Bike box strategies when bicycle traffic was greater than 300 vph and 500 vph, respectively. It was also shown that bicycle delay could be significantly reduced by providing appropriate size of queueing space. In addition, Bike box was likely to yield less vehicle and bicycle delay than Hook-turn for traffic volume patterns investigated in this study.

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

A Study on Low-Current-Operation of 850nm Oxide VCSELs Using a Large-Signal Circuit Model (대신호 등가회로 모델을 이용한 850nm Oxide VCSEL의 저전류 동작 특성 연구)

  • Jang, Min-Woo;Kim, Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.10-21
    • /
    • 2006
  • We have studied the characteristics of oxide VCSELS when their off-current and on-current are kept small in order to find out the possibility of low current operation. A large signal equivalent circuit model has been used. By comparing measured data and simulation results, the parameters of the large signal models are obtained including the capacitances. Using the large signal model, we have investigated the effects of capacitance and on/off currents upon the turn-on/turn-off characteristics and eye diagram. According to the experiment and simulation, the depletion capacitance, which has been neglected, is found to have significant influence on the him-on delay and eye-diagram. Therefore, for high speed and low current operation, the reduction of the depletion capacitance is essential.

Development of Left Turn Response System Based on LiDAR for Traffic Signal Control

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.181-190
    • /
    • 2022
  • In this paper, we use a LiDAR sensor and an image camera to detect a left-turning waiting vehicle in two ways, unlike the existing image-type or loop-type left-turn detection system, and a left-turn traffic signal corresponding to the waiting length of the left-turning lane. A system that can efficiently assign a system is introduced. For the LiDAR signal transmitted and received by the LiDAR sensor, the left-turn waiting vehicle is detected in real time, and the image by the video camera is analyzed in real time or at regular intervals, thereby reducing unnecessary computational processing and enabling real-time sensitive processing. As a result of performing a performance test for 5 hours every day for one week with an intersection simulation using an actual signal processor, a detection rate of 99.9%, which was improved by 3% to 5% compared to the existing method, was recorded. The advantage is that 99.9% of vehicles waiting to turn left are detected by the LiDAR sensor, and even if an intentional omission of detection occurs, an immediate response is possible through self-correction using the video, so the excessive waiting time of vehicles waiting to turn left is controlled by all lanes in the intersection. was able to guide the flow of traffic smoothly. In addition, when applied to an intersection in the outskirts of which left-turning vehicles are rare, service reliability and efficiency can be improved by reducing unnecessary signal costs.

A study on the development of CAD system for the design of lens of the turn signal lamp (자동차 방향지시등 렌즈설계를 우한 CAD 시스템의 개발에 관한 연구)

  • 이재원;이우용
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.89-95
    • /
    • 1993
  • This paper presents the development of CAD system for the design of lens of the Turn Signal Lamp that can model and simulate its optical performance. The system consists of three main modules: skin surface modeling module, inner lens modeling module and optical performance simulation module. Skin surface geometry can be modeled by the input of data file and inner lens can be modeled by the input of only four parameter using its geometric characteristics. Also light distribution pattern, the barometer of optical performance is generated by means of finite ray tracing method. The system display modeled geometry, ray tracing and generated light distribution pattern.

  • PDF