• 제목/요약/키워드: Turbulent wake and separation

Search Result 45, Processing Time 0.024 seconds

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results

  • Bekele, S.A.;Hangan, H.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.337-346
    • /
    • 2002
  • Wind tunnel pressure measurements and numerical simulations based on the Reynolds Stress Model (RSM) are compared with full and model scale data in the flow area of impingement, separation and wake for $60^{\circ}$ and $90^{\circ}$ wind azimuth angles. The phase averaged fluctuating pressures simulated by the RSM model are combined with modelling of the small scale, random pressure field to produce the total, instantaneous pressures. Time averaged, rsm and peak pressure coefficients are consequently calculated. This numerical approach predicts slightly better the pressure field on the roof of the TTU (Texas Tech University) building when compared to the wind tunnel experimental results. However, it shows a deviation from both experimental data sets in the impingement and wake regions. The limitations of the RSM model in resolving the intermittent flow field associated with the corner vortex formation are discussed. Also, correlations between the largest roof suctions and the corner vortex "switching phenomena" are observed. It is inferred that the intermittency and short duration of this vortex switching might be related to both the wind tunnel and numerical simulation under-prediction of the peak roof suctions for oblique wind directions.

A method for predicting the aerodynamic performance of low-speed airfoils (저속익형의 공기역학적 성능예측의 한 방법)

  • Yu, Neung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.240-252
    • /
    • 1998
  • The purpose of this study is to develop a method for predicting the aerodynamic performance of the low speed airfoils in the 2-dimensional, steady and viscous flow. For this study, the airfoil geometry is specified by adopting the longest chord line system and by considering local surface curvature. In case of the inviscid incompressible flow, the analysis is accomplished by the linearly varying strength vortex panel method and the Karman-Tsien correction law is applied for the inviscid compressible flow analysis. The Goradia integral method is adopted for the boundary layer analysis of the laminar and turbulent flows. Viscous and inviscid solutions are converged by the Lockheed iterative calculating method using the equivalent airfoil geometry. The analysis of the separated flow is performed using the Dvorak and Maskew's method as the basic method. The wake effect is also considered by expressing its geometry using the formula of Summey and Smith when no separation occurs. The computational efficiency is verified by comparing the computational results with experimental data and by the shorter execution time.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

Effect of fence porosity on the velocity field of wake flow past porous wind fences (다공성 방풍벽의 다공도가 펜스후류 속도장에 미치는 영향에 관한 연구)

  • Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.915-926
    • /
    • 1998
  • Velocity fields of near turbulent was behind a porous wind fence were measured using the 2-frame PTV method in a circulating water channel. The fences used in this study had different geometric porosity(.epsilon.) of 0, 20, 40 and 65%. The fence was embedded in a thin laminar boundary layer, i.e., .delta./H ~ = 0.1. Reynolds number based on the fence height H and free stream velocity(U$\_$o/) was about 8,400. As a result, a recirculating flow region was formed behind the fence for the .epsilon.=0% and 20% wind fence. For the wind fences having porosity larger than .epsilon.=40%, it was difficult to see separation bubbles behind the fence. The .epsilon.=20% porous fence reveals the maximum velocity reduction, however, the turbulent intensity and Reynolds shear stress are much greater than those of .epsilon.=40% fence. Among the wind fence tested in this study, the porous wind fence of .epsilon.=40% porosity is the most effective for abating wind erosion.

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

2D CFD for determining optimal location of wind turbine on Korean mountain (한국형 산악지형에서의 풍력발전 최적지 선정을 위한 2차원 유동분석)

  • Kim, Dae-Hyeong;Kim, Pyo-Jin;Lee, Chang-Hun;Choe, Jeong-Il
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.41-44
    • /
    • 2012
  • 본 연구에서는 풍력발전에 충분한 가능성을 가진 산악 지형을 모델링하여 유동의 흐름을 분석하였다. 실제 지형(설악산, 점봉산)에 대한 1/500 축소모형을 Gaussian 함수로 표현하였다. EDISON_CFD을 사용하여 산악지형의 난류유동을 해석하였으며, 해석결과의 신뢰성 확인을 위해 격자분해능에 따른 속도분포를 비교하였다. 산악지형에 따른 유동현상을 속도분포 및 유선함수 등에 의해 분석하였다. 또한 풍력터빈 설치 높이 기준에 의거하여 지형변화에 따른 주 유동방향 속도분포를 살펴보았다. 지형효과에 따른 유동해석결과를 기반으로 풍력 발전 가능 영역이 논의되었다.

  • PDF

A Study on the Turbulent Flow Characteristics in the Wake of Transom Sterns using PIV Method (동일입자추적기법을 이용한 트랜섬선미 후류 난류유동특성에 관한 연구)

  • Lee, Gyoung-Woo;Gim, Ok-Sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.352-359
    • /
    • 2012
  • An experiment was carried out to figure out the turbulence flow characteristics in the wake of the transom stern's 2-dimensional section by 2-frame grey level cross correlation PIV method at Re= $3.5{\times}10^3$, Re= $7.0{\times}10^3$. The angles of transom stern are $45^{\circ}$(Model "A"), $90^{\circ}$(Model "B") and $135^{\circ}$(Model "C") respectively. The depth of wetted surface is 40mm from free surface. Strong turbulence intensity appears at the interaction between the flow separation of the bottom of a model and the free surface. This study provides statistic flow information such as turbulence intensity, Reynolds stress and turbulence kinetic energy. Model C type (Raked transom) has low Reynolds stress and turbulence kinetic energy.

Numerical study of base flow of afterbodies for launch vehicle in supersonic turbulent flow (초음속 난류 유동장내의 발사체 후방 동체형상에 따른 기저유동의 수치적 계산)

  • Park Nam-Eun;Roh Hyung-Hun;Kim Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • The projectile afterbodies for zero-lift drag reduction has been analyzed using the Navier-Stokes equations with the κ-εturbidence model. The numerical method of a second order upwind scheme has been used on an unstructured adaptive grid system. Base drag reduction methods that have been found effective on axisymmetric bodies are boattailing, base bleed, base combustion, locked vortex afterbodies and multistep afterbodies. In this paper, turbulence flow and pressure charateristics have been studied for geometries of multistep afterbodies. The important geometrical and flow parameters relevant to the design of such afterbodies have been identified by step number, length and height. The flow over multistep aftoerbodies or base have many kinds of compressible flow characteristics including expansion waves at the trailing edge, recompression waves, separation and recirculating flow in the base region, shear flow and wake flow. The numerical results have been compared and analyzed with the experimental data. The flow characteristics have been clearly shown.

BENCHMARK TESTS FOR CFD CODES FOR THE ANALYSIS OF WIND FIELD IN THE FOREST (산림 바람장 해석을 위한 전산유체역학 코드들의 벤치마크 검증)

  • Park, T.W.;Chang, S.M.;Lee, B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • In this paper, the authors test various open codes and commercial codes based on CFD technology on the wind field around the complex terrain, which is a very important transport physics in the event of forrest fire. To study the physical mechanism inside the transition from surface fire to crown fire, the wake flow behind a parallel array of trees is studied numerically to show the flow separation in the turbulent boundary layer. Two sites near to Kunsan National University are chosen for the measurement of real wind field, and obtained data are compared with those from various computational codes such as Wind-Ninja, NIST-FDS, ANSYS-CFX, and ANSYS-FlUENT, etc. Through this research, feasibility and accuracy of the present CFD codes are investigated quantitatively, compared with the measured data with AWS.