• Title/Summary/Keyword: Turbulent jet

Search Result 460, Processing Time 0.026 seconds

Flow Characteristics of Dual Impinging Jets using PIV (PIV를 이용한 이중 충돌제트의 유동 특성)

  • Kim, Dong-Keon;Kwon, Soon-Hong;Chung, Sung-Won;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon;Kwon, Soon-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2011
  • The flow characteristics of unventilated dual impinging jets were experimentally investigated. Two nozzles with an aspect ratio of 20 were separated by 6 nozzle widths. The Reynolds number based on nozzle width and nozzle exit velocity was set to 5,000. A Particle Image Velocimetry (PIV) was used to measure turbulent velocity components. It was found that, when an impingement plate was installed in the converging region, there was a stagnation region in the inner area between nozzles. However, when it was installed in the combined region, both jets were merged and collided into the plate, showing single-jet characteristics. In addition, at a dual impinging jet, as the distance between a nozzle and an impingement plate decreased, the spanwise turbulent intensity at the plate increased.

The Role of Large Scale Mixing and Radiation in the Scaling of NOx Emissions From Unconfined Flames

  • Newbold, Greg J.R.;Nathan, Graham J.;Nobes, David S.;Turns, Stephen R.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Measurements of global emissions, flame radiation and flame dimensions are presented for unconfined turbulent-jet and precessing-jet diffusion flames. Precessing jet flames are characterised by increases in global flame radiation and global flame residence time for methane and propane fuels, however a strong dependency of the NOx emission indices on the fuel type exists. The fuel type dependence is considered to be because soot radiation is more effective than gas-radiation at reducing global flame temperatures relative to adiabatic flame temperatures and reducing the NO production rate.

  • PDF

An investigation on flow characteristics of two dimensional inclined wall attaching offset jet (단이 진 경사벽면에 부착되는 2차원 제트유동에 관한 연구)

  • 송흥복;심재경;윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.52-66
    • /
    • 1998
  • An experimental study on the flow characteristics was performed for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a surface. The flow characteristics were investigated by using a split film probe with the modified Stock's calibration method. The jet mean velocity, turbulent intensity, wall static pressure coefficient profiles, and time-averaged reattachment point were measured at the Reynolds number Re (based on the nozzle width, D) ranging from 17700 to 53200, the offset ratio H/D from 2.5 to 10, and the inclined angle .alpha. from 0.deg. C to 40.deg. C. The Correlations between the maximum pressure position, minimum pressure position, and reattachment point and offset ratios, and inclined angles are presented.

  • PDF

NUMERICAL INVESTIGATION OF TURBULENT FLOW FROM AN ANNULAR JET (환형제트 난류유동에 대한 수치해석 연구)

  • Kim, Jungwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In the present study, the turbulent flow from an annular jet is investigated by using large eddy simulation. Particularly, the effect of the ratio of the inner and outer diameters is one of the main interests of this study. The instantaneous fields presented in this paper showed that behind the jet exit the backflow region, as well known in literatures, exists, and its detailed behavior depends on the ratio of the inner and outer diameters ($D_1/D_2$). The dependence on $D_1/D_2$ is attributed to the different shear layer development according to $D_1/D_2$. At small $D_1/D_2$, the development of the outer shear layer is similar to that from the circular jet. However, with increasing $D_1/D_2$, the interaction between the outer and inner shear layers becomes strong, resulting in fast transition to turbulence.

An Investigation of Roughness Effects on 2-Dimensional Wall Attaching Offset Jet Flow (조도가 2차원 벽부착 제트유동에 미치는 영향에 관한 연구)

  • 윤순현;김대성;박승철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.219-230
    • /
    • 1995
  • The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets (충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향)

  • Im, Jung-Bin;Kwon, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

Experimental Study on the Flow Characteristics of Sinusoidal Nozzle Jet (정현파 형상 노즐 제트의 유동특성에 관한 실험적 연구)

  • Kim, Hak-Lim;Rajagopalan, S.;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Two turbulent jet with different sinusoidal nozzle exit configurations of in-phase and $180^{\circ}$ out-of-phase were investigated experimentally using a smoke-wire method and a hot-wire anemometry. Mean velocity and turbulence intensity were measured at several downstream locations under $Re_D\;=\;5000$. For the case of in-phase nozzle configuration, the length of potential core exhibits negligible difference with respect to the transverse locations (0, $\lambda/4$ and $\lambda/2$), similar to that of a plane jet. On the other hand, a maximum difference of 30% in the potential-core length occurs for the $180^{\circ}$ out-of-phase configuration. The spatial distributions of turbulence intensities also show significant difference for the nozzle of $180^{\circ}$ out-of-phase, whereas non-symmetric distribution is observed in the near-exit region(x/D = 1) for the in-phase sinusoidal nozzle jet. Compared to a slit planc jet, the sinusoidal nozzle jets seem to suppress the velocity deficit as the flow goes downstream. The sinusoidal nozzle jet was found to decrease turbulent intensity dramatically. The flow visualization results show that the flow characteristics of the sinusoidal nozzle jet are quite different from those of the slit plane jet.

Experimental Study on the Heat Transfer and Turbulent Flow Characteristics of Jet Impinging the Non-isothermal Heating Plate (비균일 온도분포를 갖는 평판에 대한 충돌제트의 열전달 및 난류유동특성에 관한 연구)

  • 한충호;이계복;이충구;이창우
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • An experimental study of jet impinging the non-isothermal heating surface with linear temperature gradient is conducted with the presentation of the turbulent flow characteristics and the heat transfer rate, represented by the Nusselt number. The jet Reynolds number ranges from 15,000 to 30,000, the temperature gradient of the plate is 2~4.2$^{\circ}C$/cm and the dimensionless nozzle to plate distance (H/D) is from 2 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter (H/D) is 6 or 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number, the dimensionless nozzle to plate distance (H/D) and temperature gradient (dT/dr). It has been found that the heat transfer rate increases with increasing turbulent intensity. The wall jet is influenced by temperature gradient and the effect becomes more important at higher radii.

  • PDF

An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet (발달하는 원형제트의 간헐적 유동에 관한 실험적 연구)

  • 김숭기;조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.230-240
    • /
    • 1990
  • An exprimental research has been carried out to find the intermittent flow pattern in the transition region of a turbulent round jet in order to elucidate detailed turbulence structure and to accumulate basic data necessary for computational turbulence modelling. Turbulent signals were processed digitally to obtain conventional or conditional velocity components. The high-order conditional correlations obtained in this study showed similar trends as those of other free shear flows. It was found that the non-turbulent fluid contributes negligibly to the turbulent kinetic energy production and its diffusive transport and that the diffusion by bulk convection has the same order of magnitude as the gradient diffusion in the free boundary region. The statistical analyses such as flatness factor, skewness factor and probability density functions of turbulent and non-turbulent zone durations have also been performed.