• Title/Summary/Keyword: Turbulent jet

Search Result 460, Processing Time 0.024 seconds

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

3-Dimensional Locally Elliptic Numerical Predictions of Turbulent Jet in a Crossflow In A Curved Duct (곡관내의 주유동에 분사되는 난류제트에 대한 3차원 국소타원형 수치해석)

  • 정형호;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.470-483
    • /
    • 1990
  • Turbulent jet in a crossflow, issuing from a row of holes on a convex surface of 90 .deg. bend duct, is predicted by a 3-dimensional numerical method. The Cartesian coordinate system in adopted in upstream and downstream tangents and the cylindrical polar coordinate system in curved region. The Reynolds stresses and heat fluxes are obtained from a standard k-e model in the core region and van Driest model in the vicinity of the wall. The governing equations are discretized by a finite volume method and solutions are obtained by a locally elliptic calculation procedure. Pressure and convective terms are treated by SIMPLE algorithm and hybrid scheme respectively. A vortex initially induced by the injected jet has been built up due to the interaction with the secondary flow caused by pressure gradient and centrifugal force. The vortex structure has a strong influence on the wall cooling effectiveness. Another vortex like horseshoe is formed in the vicinity of the injection hole and its strength is getting weak as it moves downward.

Heat Transfer Measurements by a Round Impinging Jet on a Rib-Roughened Flat Plate (표면조도를 가진 평판에서 원형충돌제트에 의한 열전달 측정)

  • Lee, Dae-Hee;Kim, Yun-Taek;Chung, Seung-Hun;Chung, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.87-92
    • /
    • 2000
  • This study is to investigate the heat transfer characteristics the for a round turbulent jet impinging on the flat plate with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured using liquid crystal and a digital color image processing system. The experiments were made fur the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the rib type [height ($d_1$) 2mm, pitch (p) from 12 to 36mm]. It was found that for $L/d{\ge}6$ the average Nusselt numbers on the flat plate with rib type C ($p/d_1=16$) are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface.

  • PDF

Velocity Field Measurements of a Vertical Turbulent Buoyant Jet Using a PIV Technique (PIV 기법을 이용한 비등온 부력제트의 유동구조에 관한 연구)

  • Sin, Dae-Sik;Yun, Jeong-Hwan;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.611-618
    • /
    • 2001
  • The flow characteristics of a turbulent buoyant jet were experimentally investigated using a single-frame PIV system. The Reynolds number based on the nozzle exit velocity and nozzle diameter was about Re=5$\times$10$^3$. The instantaneous velocity fields in the streamwise plane passing the jet axis were measured in the near field X/D <11 with and without the temperature gradient. By ensemble averaging the instantaneous velocity fields, the spatial distributions of mean velocity, vorticity, and higher-order statistics up to third order were obtained. The temperature difference of 10$\^{C}$ does not affect a significant influence to the flow structure in the near field, but the total entrainment rate is increased slightly. The entrainment rate shows a linear variation with the streamwise distance in the region after X/D=5.0.

Heat transfer coefficient measurement by a jet impinging on a rib-roughened convex surface (표면조도를 가지는 볼록한 면에 충돌하는 제트에 의한 열전달계수 측정)

  • Jeong, Yeong-Seok;Lee, Dae-Hui;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.373-385
    • /
    • 1998
  • The local Nusselt numbers have been measured for a round turbulent jet impinging on the convex surface with and without rib. Liquid crystal/transient method was used to determine the Nusselt number distributions along the surface. The temperature on the surface was measured to within .+-.0.25 deg. C accuracy using liquid crystal and a digital color image processing system. The experiments were made for the jet Reynolds number (Re) 23,000, the dimensionless nozzle-to-surface distance (L/d) from 6 to 10, the dimensionless surface curvature (d/D) 0.056, and the various rib types (height(d$_{1}$) from 1 to 2 mm, pitch (p) from 6 to 32 mm). It was found that the average Nusselt numbers on the convex surface with rib are higher than those without rib, mainly due to an increase in the turbulent intensity caused by flow separation, recirculation and reattachment on the wall surface. In addition, we compared the results by the steady-state method using the gold-film Intrex with those by the transient method.

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

A study on Behavior of Turbulent Transient Jets with Butane and Propane (Butane 및 propane의 비정상 난류 제트 특성에 관한 연구)

  • Lee, Beom-Ho;Song, Hak-Hyun;Cho, Seung-Hwan;Hong, Sung-Tae;Lee, Dae-Yup;Lee, Tae-Woo
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

A Study on the Improvement of Dynamic Characteristics of Spindle-Work System in Lathe - Focused on the Bolt Juint between Headstock and Bed - (선반주축계의 동특성 향상에 관한 연구 -주축대와 베드의 보울트 결합을 중심으로-)

  • 신용호;박태원;홍동표;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • Prediction performances by Einstein's equation of diffusivity, Peskin's model, Three-Equation model, Four-Equation model and Algebraic Stress Model, have been compared by analyzing twophase (air-solid) turbulent jet flow. Turbulent kinetic energy equation of dispersed phase was solved to investigate effects of turbulent kinetic energy on turbulent diffusivity. Turbulent kinetic energy dissipation rate of particles has been considered by solving turbulent kinetic energy dissipation rate equation of dispersed phase and applying it to turbulent diffusivity of dispersed phase. Results show that turbulent diffusivity of dispersed phase can be expressed by turbulent kinetic energy ratio between phases and prediction of turbulent kinetic energy was improved by considering turbulent kinetic energy dissipation rate of dispersed phase for modelling turbulent diffusivity. This investigation also show that Algebraic Stress Model is the most promising method in analyzing gas-solid two phases turbulent flow.