• Title/Summary/Keyword: Turbulent inflow

Search Result 78, Processing Time 0.022 seconds

Analysis of Trail-Edge Noise from Sirocco Fans (시로코 홴 날개후단 소음예측)

  • Kim, Kyoung-Ho;Lee, Seung-Bae;Kim, Ji-Sung;Kwon, Yang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.396-401
    • /
    • 2000
  • It is addressed that the turbulent broadband sound power from a sirocco fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. The design parameters such as solidity(c/s) and stagger angle are specified to predict performance and noise level because the separation and slip velocity are strongly affected by them along with the flow coefficient. This paper reports the effects of the solidity and the stagger angle upon the trailing edge noise from the circular arc-shaped blade of sirocco fan.

  • PDF

Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space (바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향)

  • 정광섭;한화택;홍승재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF

Large eddy simulation of wind loads on a long-span spatial lattice roof

  • Li, Chao;Li, Q.S.;Huang, S.H.;Fu, J.Y.;Xiao, Y.Q.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.57-82
    • /
    • 2010
  • The 486m-long roof of Shenzhen Citizens Centre is one of the world's longest spatial lattice roof structures. A comprehensive numerical study of wind effects on the long-span structure is presented in this paper. The discretizing and synthesizing of random flow generation technique (DSRFG) recently proposed by two of the authors (Huang and Li 2008) was adopted to produce a spatially correlated turbulent inflow field for the simulation study. The distributions and characteristics of wind loads on the roof were numerically evaluated by Computational Fluid Dynamics (CFD) methods, in which Large Eddy Simulation (LES) and Reynolds Averaged Navier-Stokes Equations (RANS) Model were employed. The main objective of this study is to explore a useful approach for estimations of wind effects on complex curved roof by CFD techniques. In parallel with the numerical investigation, simultaneous pressure measurements on the entire roof were made in a boundary layer wind tunnel to determine mean, fluctuating and peak pressure coefficient distributions, and spectra, spatial correlation coefficients and probability characteristics of pressure fluctuations. Numerical results were then compared with these experimentally determined data for validating the numerical methods. The comparative study demonstrated that the LES integrated with the DSRFG technique could provide satisfactory prediction of wind effects on the long-span roof with complex shape, especially on separation zones along leading eaves where the worst negative wind-induced pressures commonly occur. The recommended LES and inflow turbulence generation technique as well as associated numerical treatments are useful for structural engineers to assess wind effects on a long-span roof at its design stage.

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

Echocardiographic Diagnosis of Mitral Valve Dysplasia Concurrent with Mitral Stenosis and Tricuspid Valve Dysplasia in a Dog (개에서 승모판 이형성증과 병발한 승모판 협착증 및 삼첨판 이형성증의 심초음파적 특징 1례)

  • Choi, Soo-Young;Lee, Jung-Woo;Lee, Young-Won;Choi, Ho-Jung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.101-104
    • /
    • 2015
  • A 4-years-old, intact male Golden retriever dog was presented with abdominal distension and dyspnea. Physical examination revealed arrhythmia and cardiac murmur. Generalized cardiomegaly, pleural effusion and ascites were shown on thoracic and abdominal radiographs. Two-dimensional echocardiography revealed abnormal mitral and tricuspid valve motion, mitral and tricuspid regurgitation, left ventricular eccentric hypertrophy and left atrial dilation. Color-flow Doppler imaging revealed turbulent flow extending into the left ventricle during diastole from the mitral valve orifice, and into the left atrium during systole. Spectral Doppler recordings revealed highly increased early diastolic mitral valve inflow and prolonged pressure half-time of mitral inflow. Based on the echocardiographic examination, the diagnosis was made as the mitral valve dysplasia concurrent with mitral valve stenosis and tricuspid valve dysplasia.

High-Fidelity Ship Airwake CFD Simulation Method Using Actual Large Ship Measurement and Wind Tunnel Test Results (대형 비행갑판을 갖는 함정과 풍동시험 결과를 활용한 고신뢰도 함정 Airwake 예측)

  • Jindeog Chung;Taehwan Cho;Sunghoon Lee;Jaehoon Choi;Hakmin Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.135-145
    • /
    • 2023
  • Developing high-fidelity Computational Fluid Dynamics (CFD) simulation methods used to evaluate the airwake characteristics along a flight deck of a large ship, the various kind of data such as actual ship measurement and wind tunnel results are required to verify the accuracy of CFD simulation. Inflow velocity profile at the bow, local unsteady flow field data around the flight deck, and highly reliable wind tunnel data which were measured after reviewing Atmospheric Boundary Layer (ABL) simulation and Reynolds Number effects were also used to determine the key parameters such as turbulence model, time resolution and accuracy, grid resolution and type, inflow condition, domain size, simulation length, and so on in STAR CCM+. Velocity ratio and turbulent intensity difference between Full-scale CFD and actual ship measurement at the measurement points show less than 2% and 1.7% respectively. And differences in velocity ratio and turbulence intensity between wind tunnel test and small-scale CFD are both less than 2.2%. Based upon this fact, the selected parameters in CFD simulation are highly reliable for a specific wind condition.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

A Study on Turbulence Stimulation Effect of Studs for Boundary Layer Over a Flat Plate (평판 경계층에 대한 스터드의 난류촉진 영향 연구)

  • Lee, Joon-Hyoung;Jeong, So-Won;Hwang, Seunghyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.18-28
    • /
    • 2022
  • The turbulence stimulation effect of studs for boundary layer over a flat plate was investigated through the flow measurement in KRISO cavitation tunnel. For the test, Laser Doppler Velocimetry (LDV) and three flat plate models were used: (1) flat plate without studs; (2) flat plate with one stud row; (3) flat plate with two stud rows. The dimension and location of stud rows and the inflow speed were selected considering test conditions for standard-sized model ships in KRISO towing tank. The boundary layer characteristics of test models were analyzed and compared in terms of mean velocity profiles, turbulence intensity profiles, boundary layer thickness, and shape factor. In the case of the flat plate without studs, transition from laminar to turbulent flow occurred around Rex=3.83 ~ 5.19 × 105. In the case of flat plates with stud rows, the flow rapidly changed into turbulent flow right after passing the first stud row. In the state where turbulence was already developed, the second stud row slightly increased the turbulence intensity near the top of the stud, but did not significantly affect the boundary layer characteristics such as mean velocity distribution, boundary layer thickness, and shape factor.

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

Dissipation and Control of Flow Instability in a Rectangular Swirl Combustor using Cooling Flow Injection (사각 스월 연소기에서 냉각 유동을 이용한 연소기 내 유동 불안정 감쇠 및 조종)

  • Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.236-241
    • /
    • 2009
  • To identify turbulent flow characteristics of non-reacting case resulted from cooling flow injection in a rectangular swirl combustor, 3D Large Eddy Simulation(LES) was implemented and Proper Orthogonal Decomposition(POD) analysis was used for post-processing. The combustor of concern is the LM6000, lean premixed dry low-NOx annular combustor, developed by GEAE. It was observed that increase in speed of shear layer resulted from the inflow of cooling flow caused intensified vorticity magnitude in central toroidal recirculation zone. In the case of vorticity magnitude in corner recirculation zone, however, was weakened. In addition, pressure fluctuation in combustor was damped down and longitudinal acoustic mode was significantly dissipated

  • PDF