• 제목/요약/키워드: Turbulent flow Noise

검색결과 156건 처리시간 0.026초

통계적 난류합성 모델을 이용한 원심홴 내부 광대역 소음 예측 (Prediction of Internal Broadband Noise of a Centrifugal Fan Using Stochastic Turbulent Synthetic Model)

  • 허승;김대환;정철웅;김태훈
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1138-1145
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted using hybrid CAA techniques based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using computational fluid dynamics(CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the internal broadband noise of the centrifugal fan is predicted using the boundary element method(BEM) and the modeled sources. The predicted noise spectrum is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

하이브리드기법을 이용한 저마하수 난류소음의 효율적 전산해석 (Efficient Computation of Turbulent Flow Noise at Low Mach Numbers Via Hybrid Method)

  • 서정희;문영준
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.814-821
    • /
    • 2007
  • A hybrid method is presented for efficient computation of turbulent flow noise at low Mach numbers. In this method, the turbulent flow field is computed by incompressible large eddy simulation (LES), while the acoustic field is computed with the linearized perturbed compressible equations (LPCE) derived in this study. Since LPCE is computed on the rather coarse acoustic grid with the flow variables and source term obtained by the incompressible LES, the computational efficiency of calculation is greatly enhanced. Furthermore, LPCE suppress the instability of perturbed vortical mode and therefore secure consistent and stable acoustic solutions. The proposed LES/LPCE hybrid method is applied to three low Mach number turbulent flow noise problems: i) circular cylinder, ii) isolated flat plate, and iii) interaction between cylinder wake and airfoil. The computed results are closely compared with the experimental measurements.

통계적난류합성모델을 이용한 원심홴 내부 광대역 소음 예측 (Prediction of internal broadband noise of a centrifugal fan using stochastic turbulent synthetic model)

  • 허승;김대환;정철웅;김태훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.627-632
    • /
    • 2011
  • The internal broadband noise of a centrifugal fan in a household refrigerator is predicted by using hybrid CAA technique based on stochastic turbulent synthetic model. First, the unsteady flow field around the centrifugal fan is predicted using Computational Fluid Dynamics (CFD) method. Then, the turbulent flow field is synthesized by applying the stochastic turbulent synthetic technique to the predicted flow field. The aerodynamic noise sources of the centrifugal fan are modeled on a basis of the synthesized turbulent field. Finally, the broadband noise of the centrifugal fan is predicted using Boundary Element Method (BEM) and the modeled sources. The predicted result is compared with the experimental data. It is found that the predicted result closely follows the experimental data. The proposed method can be used as an effective tool for designing low-noise fans without expensive computational cost required generally for the LES and DNS simulations to resolve the turbulence flow field responsible for the broadband noise.

  • PDF

난류 제트확산화염의 연소소음 특성에 관한 실험연구 (Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames)

  • 김호석;오상헌
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

선저 소나돔의 유체소음원 특성 분석 (Investigation of Flow Noise Source of Hull Mounted Sonar Dome)

  • 신구균;강명환;이종주;서영수;이경준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.575-576
    • /
    • 2014
  • The Hull Mounted Sonar Dome housing the sonar sensor array is a ship's structure protruded from ship bottom, which is under turbulent flow. The flow of sonar surface is highly disturbed and turbulent. In this case the wall pressure fluctuations within the turbulent boundary layer are one of the most important flow induced self noise sources of the SONAR system. We investigate the characteristics of the wall pressure fluctuations of the hull mounted sonar dome through the model test in the cavitation tunnel. This paper contains the wall pressure fluctuation spectra at various free stream velocities.

  • PDF

유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings)

  • 박경훈;이승재;신구균
    • 한국음향학회지
    • /
    • 제26권6호
    • /
    • pp.293-300
    • /
    • 2007
  • 수중운동체가 주행할 때 수중운동체의 표면에는 난류 경계층이 형성되고, 난류 경계층 내 벽면 변동압력은 탄성체인 수중운동체의 표면을 가진시켜 유동 유기 소음을 발생시킨다. 이러한 유체 소음을 감소시키기 위한 하나의 방법으로 수중운동체 표면에 유연재를 부착하여 수중운동체의 유동 유기 방사 소음을 감소시키는 방법이 제안되기도 한다. 본 논문에서는 유연재 부착에 따른 수중에서의 유체소음의 변화 특성을 살펴보기 위하여 유연재가 코팅되지 않은 강판 시편과, 고무 재질의 Neoprene 및 폴리우레탄 재질의 유연재가 부착된 강판시편을 저소음 공동수조에 설치한 후 여러 가지 유속 조건에서 유체소음의 주요 소음원인 난류 경계층 내 벽면 변동압력을 측정하고 그 결과를 비교 분석하였다. 그 결과 유연재를 코팅한 경우에는 유연재로 인하여 난류 경계층의 두께가 두꺼워지는 등 경계층 유동이 변화하지만, 유연재에서의 난류 에너지의 소산으로 인하여 고주파수 대역에서 약 10dB의 벽면 변동압력의 감소 효과를 확인할 수 있었다.

가스 및 분무화염의 연소소음 특성에 관한 실험연구 (Combustion Noise Characteristics in Gas and Liquid Flames)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

On the computation of low-subsonic turbulent pipe flow noise with a hybrid LES/LPCE method

  • Hwang, Seungtae;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.48-55
    • /
    • 2017
  • Aeroacoustic computation of a fully-developed turbulent pipe flow at $Re_{\tau}=175$ and M = 0.1 is conducted by LES/LPCE hybrid method. The generation and propagation of acoustic waves are computed by solving the linearized perturbed compressible equations (LPCE), with acoustic source DP(x,t)/Dt attained by the incompressible large eddy simulation (LES). The computed acoustic power spectral density is closely compared with the wall shear-stress dipole source of a turbulent channel flow at $Re_{\tau}=175$. A constant decaying rate of the acoustic power spectrum, $f^{-8/5}$ is found to be related to the turbulent bursts of the correlated longitudinal structures such as hairpin vortex and their merged structures (or hairpin packets). The power spectra of the streamwise velocity fluctuations across the turbulent boundary layer indicate that the most intensive noise at ${\omega}^+$ < 0.1 is produced in the buffer layer with fluctuations of the longitudinal structures ($k_zR$ < 1.5).

Flow-induced interior noise from a turbulent boundary layer of a towed body

  • Abshagen, J.;Kuter, D.;Nejedl, V.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.259-269
    • /
    • 2016
  • In this work results from an underwater experiment on flow-induced noise in the interior of a towed body generated from a surrounding turbulent boundary layer are presented. The measurements were performed with a towed body under open sea conditions at towing depths below 100 m and towing speeds ranging from 2.4 m/s to 6.2 m/s (4 kn to 12 kn). Focus is given in the experiments to the relation between (outer) wall pressure fluctuations and the (inner) hydroacoustic near-field on the reverse side of a flat plate. The plate configuration consists of a sandwich structure with an (thick) outer polyurethane layer supported by an inner thin layer from fibre-reinforced plastics. Parameters of the turbulent boundary layer are estimated in order to analyse scaling relations of wall-pressure fluctuations, interior hydroacoustic noise, and the reduction of pressure fluctuations through the plate.

축대칭 물체 선단에서 발생하는 경계층 내 벽면 변동 압력에 관한 연구 (Wall Pressure Fluctuations of the Boundary Layer Flow at the Nose of and Axisymmetric Body)

  • 신구균;홍진숙;김상윤;김상렬;박규철
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.602-609
    • /
    • 2000
  • When an axisymmetric body moves through air the boundary layer near the stagnation region remains laminar and subsequently it goes through transition to turbulent. The experimental investigation described in this paper concerns the characteristics of wall pressure fluctuations at the initial stage of boundary layer flow including transition. Flush-mounted microphones are used to measure the wall pressure fluctuations at the transition and turbulent boundary layer region of a blunt axisymmetric body in the low noise wind tunnel. It if found from this study that the wall pressure fluctuations in the transition region is higher than that in the turbulent region.

  • PDF