• Title/Summary/Keyword: Turbulent effect

Search Result 924, Processing Time 0.025 seconds

A Turbulent Bounbary Layer Effect of the De-Laval Nozzle on the Combustion Chamber Pressure (De-Laval 노즐의 난류 경계층 유동이 연소실 압력에 미치는 영향)

  • 장태호;이방업;배주찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.635-644
    • /
    • 1986
  • A Compuressible turbulent boundary layer effect of the high temperature, accelerating gas flow through the De-Laval nozzle on combustion chamber pressure is numerically investigated. For this purpose, the coupled momentum integral equation and energy integral equation are solved by the Bartz method, and 1/7 power law for both the turbulent boundary layer velocity distribution and temperature distribution is assumed. As far as the boundary layer thicknesses are concerned, we can obtain reasonable solutions even if relatively simple approximations to the skin friction coefficient and stanton number have been used. The effects of nozzle wall cooling and/or mass flow rate on the boundary layer thicknesses and the combustion chamber pressure are studied. Specifically, negative displacement thickness is appeared as the ratio of the nozzle wall temperature to the stagnation temperature of the free stream decreases, and, consequently, it makes the combustion chamber pressure low.

Evaluation of Suboptimal Control in Turbulent Channel Flow (난류채널유동에서의 준최적제어 평가)

  • Seong, Hyeong-Jin;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1227-1236
    • /
    • 2001
  • A systematic analysis is made of suboptimal control for drag reduction. The influence of the amplitude of actuation (A) and the time scale of actuation ($\Delta$t(sub)a(sup)+) is evaluated. Two wall sensing variables are employed (∂w/∂y│(sub)w and ∂p/∂z│(sub)w) with two wall actuations (${\Phi}$$_2$and ${\Phi}$$_3$). To test the suboptimal control, direct numerical simulations of turbulent channel flow at Re(sub)$\tau$=100 are performed in a spectral domain. It is found that the effect of A and $\Delta$t(sub)a(sup)+∼1. The near-wall behaviors of flow structure are analyzed to characterize the drag reduction. The size effect of the sensor/actuator is examined.

The Effect of Buoyancy Orientation on Flow Structures in Turbulent Channel Flow using DNS

  • El-Samni Osama;Yoon HyunSik;Chun Ho Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2005
  • The effect of buoyancy orientation on turbulent channel flow has been investigated using DNS (direct numerical simulation). Grashof number is kept at 9.6 $\times 10^{5}$ while changing the orientation of the buoyancy vector to be parallel or perpendicular to the channel walls. Four study cases can be distinguished during this research namely; streamwise, wall-normal unstable stratification, wall-normal stable stratification and spanwise oriented buoyancy. The driving mean pressure gradient used in all cases is adjusted to keep mass flow rate constant while friction Reynolds number is around 150. At this Grashof number, the skin friction shows decrement in the unstable and stable stratification and increment in the other two cases. Analyses of the changes of flow structure for the four cases are presented highlighting on the mean quantities and second order statistics.

Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings

  • Gao, Yang;Gu, Ming;Quan, Yong;Feng, Chengdong
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.597-616
    • /
    • 2020
  • The blockage effect on the aerodynamic characteristics of tall buildings is a fundamental issue in wind tunnel test but has rarely been addressed. To evaluate the blockage effects on the aerodynamic forces on a square tall building and flow field peripherally, large eddy simulations (LES) were performed on a 3D square cylinder with an aspect ratio of 6:1 under the uniform smooth inflow and turbulent atmospheric boundary layer (ABL) inflow generated by the narrowband synthesis random flow generator (NSRFG). First, a basic case at a blockage ratio (BR) of 0.8% was conducted to validate the adopted numerical methodology. Subsequently, simulations were systematically performed at 6 different BRs. The simulation results were compared in detail to illustrate the differences induced by the blockage, and the mechanism of the blockage effects under turbulent inflow was emphatically analysed. The results reveal that the pressure coefficients, the aerodynamic forces, and the Strouhal number increase monotonically with BRs. Additionally, the increase of BR leads to more coherence of the turbulent structures and the higher intensity of the vortices in the vicinity of the building. Moreover, the blockage effects on the aerodynamic forces and flow field are more significant under smooth inflow than those under turbulent inflow.

A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames (정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

Flow Analysis of the Plain Seal with Injection (분사를 수반하는 평씨일 내의 유동해석)

  • 이관수;김우승;김기연;김창호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.795-802
    • /
    • 1992
  • A numerical analysis is performed on the turbulent flow in the plain seal with injection. The parameters used in this study are as follows : Reynolds number, rotation speed, injection speed, clearance ratio, injection angle, and axial injection location. Flow pattern and leakage performance due to the variation of parameters are investigated. SIMPLER algorithm is used to solve the Navier-Stokes equation governing steady, incompressible turbulent flow and standard K- .epsilon. turbulent model is used to consider the turbulence effects. The leakage performance is significantly enhanced with injection. The increases of the injection flow rate and be rotation speed of the shaft cause the leakage performance to the increased. With the increase of the Reynolds number the leakage performance is diminished. At the injection angle of 90deg, the leakage coefficient has a minimum value. The pressure drop has a maximum value at axial center location but the injection location has little effect on the pressure drop. Clearance ratio has a significant effect on the pressure drop.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Effect of Boundary Layer Thickness on the Flow Characteristics around a Rectangular Prism (직사각형 프리즘 주위의 유동특성에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.306-311
    • /
    • 2001
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer$(\delta=270mm)$ was the natural turbulent boundary layer at the test section with fully long developing length(18m). The thin boundary layer with 36.5mm thickness was generated by on a smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity and the height of the model was $7.9{\times}10^3$. The mean velocity vector fields and turbulent kinetic energy distribution were measured and compared. The effect of boundary layer thickness is clearly observed not only in the length of separation bubble but also in the reattachment points. The thinner boundary layer thickness, the higher turbulent kinetic energy peak around the model roof. It is strongly recommended that the height ratio between model and approaching boundary layer thickness should be a major parameter.

  • PDF

LES for Turbulent Flow in Hybrid Rocket Fuel Garin (하이브리드 로켓 산화제 난류 유동의 LES 해석)

  • Lee, Chang-Jin;Na, Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.233-237
    • /
    • 2007
  • Recent experimental data shows that an irregular fuel surface pops up during the combustion test. This may contribute to the agitated boundary layer due to blowing effect of fuel vaporization. Blowing effect can be of significance in determining the combustion characteristics of solid fuel within the oxidizer flow. LES was implemented to investigate the flow behavior on the fuel surface and turbulence evolution due to blowing effect. Simple channel geometry was used for the investigation instead of circular grain configuration without chemical reactions. This may elucidate the main mechanism responsible for the formation of irregular isolated spots during the combustion in terms of turbulence generation. The interaction of turbulent flow with blowing mass flus causes to breakup turbulent coherent structures and to form the small scale isolated eddies near the fuel surface. This mechanism attributes to the formation of irregular isolated sopt on the fuel surface.

  • PDF

Investigation of Turbulent Flow in Rotating Straight Square Duct (회전하는 정사각 직관내 난류유동)

  • Chun, K.H.;Choi, Y.D.;Kim, D.C.;Choi, S.Y.;Lim, H.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.766-771
    • /
    • 2001
  • An experimental study was undertaken to investigate the effect of coriolis force for the turbulent flow at low Reynolds numbers in a rotating straight square duct. The study was carried out using a hot-wire anemometer. The flow Reynolds number based on the hydraulic diameter ranged from 4,000 to 18,000 and Rotation number ranged from 0 to 0.196. At Re=9000, developing turbulent flow was calculated for mean velocity and Reynolds stress. Pressure coefficient and energy dissipation spectrum were also calculated.

  • PDF