• Title/Summary/Keyword: Turbulent Steady Flow

Search Result 166, Processing Time 0.03 seconds

A Study on the Flow Characteristics Around an Axial Fan of Rotary Burner (로터리 버너의 축류형 팬 주위 유동특성 연구)

  • Ko, D.G.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The flow analysis of the axial fan of rotary burner was performed by SIMPLE(Semi Implicit Method for Pressure Linked Equations) algorithm and finite volume mothod performed in the case of 3-D, incompressible, turbulent flow. In this study, the coordinate transformation was adapted for the complex geometry of axial fan, and the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent flow. Multi-block grid system was used for flow field and divided into four domains such as the inlet, outlet, flow field of rotating vane, and tip clearance. Fan rotation was simulated by rotational motion using MRF(Multiple Rotating Reference Frame) in steady, incompressible state flow.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3차원 유동에 대한 수치해석)

  • Yoon, Joon-Yong;Maeng, Joo-Sung;Byun, Sung-Joon;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

A Numerical Method for Dispersion of Unsteady Horizontal Line Source in Turbulent Shear Flow (난류전단 흐름에서의 비정상 수평 선오염원의 확산에 관한 수치해법)

  • 전경수
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.187-198
    • /
    • 1996
  • A numerical model for unsteady dispersion of horizontal line source in turbulent shear flow is developed. A fractional step finite difference method is used which splits the unsteady two-dimensional advective diffusion equation into the longitudinal advection and the vertical diffusion equations, and solves them alternately for half time intervals by the Holly-Preissmann scheme and the Crank-Nicholson scheme, respectively. The developed numerical model is verified using a semi-analytic solution for steady dispersion in turbulent shear flow. Dispersion of an instantaneous plane source in turbulent shear flow is analyzed using the model. The degree of mixing at the same dimensionless time is almost the same regardless of the friction factor, and the travel distance required to reach a certain degree of mixing is inversely proportional to the square root of the friction factor.

  • PDF

Study on Measurement and Numerical Analysis for Fluid Flow past a Circular Cylinder in Rectangular Duct (사각던트 내에서 원형 실린더를 지나는 유체유동의 측정 및 수치해석에 관한 연구)

  • 김경환;윤영환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1095-1102
    • /
    • 2003
  • Flow characteristics of turbulent steady fluid flow past a cylinder in rectangular duct are measured by 5 W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between the measurement and computation. The turbulent models applied in the computations are standard K-epsilon model, RNG K-epsilon model and Chen K-epsilon model. Acurracy of standard K-epsilon model is a little bit better than acurracies of other models even though those models have almost the same order of error compared to measured data. The computations predict satisfactorily the measured velocity profiles at middle section of the circular cylinder before the fluid flow diverges. However, there are some disagreements between them at down stream from the circular cylinder.

Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

Numerical Study on Flow Field in Centrifugal Fan Volute (원심송풍기 벌류트 내부유동의 수치해석적 연구)

  • Kim, Se-Jin;Joo, Won-Gu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-71
    • /
    • 1998
  • The non-uniform pressure generated in the volute generally are propagating upstream. As a result, outlet conditions of rotaing impeller are changed and the performance degrades. The major object of this research is to develop the numerical method which can calculate the effects of impeller and volute flow field interactions. Under the assumption of steady three-dimensional incompressible turbulent flow, the time averaged N-S equations involving $k-{\epsilon}$ turbulent model was solved by the F.V.M. To verify the computational method, the calculations are compared with experimental results published in literature and show satisfactory agreement with them, The three-dimensional flow characteristics within the volute of a centrifugal fan at design and off-design operating points have also been studied.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3 차원 유동에 대한 수치해석)

  • Yun Jun Yong;Maeng Ju Seong;Byeon Seong Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP

  • Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson's electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim ${\kappa}-{\varepsilon}$ turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}=12.4$). Secondary flow vortices caused by the EHD increases with increasing discharge current or EHD number, hence pressure drop of ESP increases.

Effects of Priodic Blowing Through a Spnnwise Slot on a Turbulent Boundary Layer (I) - Comparison with Steady Blowing - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (I) - 정상 가진과의 비교 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.31-40
    • /
    • 2004
  • Direct numerical simulations were performed to analyze the effects of time-periodical blowing through a spanwise slot on a turbulent boundary layer. The blowing velocity was varied in a cyclic manner from 0 to 2A$^{+}$(A$^{+}$ =0.25, 0.50 and 1.00) at a fixed blowing frequency of f$^{+}$=0.017. The effect of steady blowing (SB) was also examined, and the SB results were compared with those for periodic blowing (PB). PB reduced the skin friction near the slot, although to a slightly lesser extent than SB. PB was found to generate a spanwise vortical structure in the downstream of the slot. This vortex generates a reverse flow near the wall, thereby reducing the wall shear stress. The wall-normal and spanwise turbulence intensities under PB are increased as compared to those under SB, whereas the streamwise turbulent intensity under PB is weaker than that under SB. PB enhances more energy redistribution than SB. The periodic response of the streamwise turbulence intensity to PB is propagated to a lesser extent than that of the other components of the turbulence intensities and the Reynolds shear stress.