• Title/Summary/Keyword: Turbulent Steady Flow

Search Result 166, Processing Time 0.032 seconds

NUMERICAL ANALYSIS OF THE AIRFOIL IN SELF-PROPELLED FISH MOTION USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD (가상경계볼쯔만법을 이용한 자력추진 물고기 운동 익의 유영해석)

  • Kim, Hyung-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • Immersed boundary lattice Boltzmann method has been applied to analyze the characteristics of the self-propelled fish motion swimming robot. The airfoil NACA0012 with caudal fin stroke model was considered to examine the characteristics. The foil in steady forward motion and a combination of steady-state harmonic deformation produces thrust through the formation of a flow downstream from the trailing edge. The harmonic motion of the foil causes unsteady shedding of vorticity from the trailing edge, while forming the vortices at the leading edge as well. The resultant thrust is developed by the pressure difference formed on the upper and lower surface of the airfoil. and the time averaged thrust coefficient increases as Re increase in the region of $Re{\leqq}700$. The suggested numerical method is suitable to develop the fish-motion model to control the swimming robot, however It would need to extend in 3D analysis to examine the higher Re and to determine the more detail mechanism of thrust production.

Control of the VIV of a cantilevered square cylinder with free-end suction

  • Li, Ying;Li, Shiqing;Zeng, Lingwei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.75-84
    • /
    • 2019
  • A steady slot suction near the free-end leading edge of a finite-length square cylinder was used to control its aerodynamic forces and vortex-induced vibration (VIV). The freestream oncoming flow velocity ($U_{\infty}$) was from 3.8 m/s to 12.8 m/s. The width of the tested cylinder d = 40 mm and aspect ratio H/d = 5, where H was the height of the cylinder. The corresponding Reynolds number was from 10,400 to 35,000. The tested suction ratio Q, defined as the ratio of suction velocity ($U_s$) at the slot over the oncoming flow velocity at which the strongest VIV occurs ($U_{\nu}$), ranged from 0 to 3. It was found that the free-end slot suction can effectively attenuate the VIV of a cantilevered square cylinder. In the experiments, the RMS value of the VIV amplitude reduced quickly with Q increasing from 0 to 1, then kept approximately constant for $Q{\geq}1$. The maximum reduction of the VIV occurs at Q = 1, with the vibration amplitude reduced by 92%, relative to the uncontrolled case. Moreover, the overall fluctuation lift of the finite-length square cylinder was also suppressed with the maximum reduction of 87%, which occurred at Q = 1. It was interesting to discover that the free-end shear flow was sensitive to the slot suction near the leading edge. The turbulent kinetic energy (TKE) of the flow over the free end was the highest at Q = 1, which may result in the strongest mixing between the high momentum free-end shear flow and the near wake.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.

Heat Transfer Analysis of Exhaust Gas into the Passenger Car Muffler (승용차 머플러에 유입되는 배기가스의 열전달 해석)

  • Lee, Chung-Seub;Shin, Jae-Ho;Lee, Hae-Jong;Suh, Jeong-Se;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.157-162
    • /
    • 2003
  • This study is analysis on the heat transfer of exhaust gas into the muffler at passenger Car. Numerical analysis with Computational fluid Dynamics(CFD) was carried out to investigate exhaust gas flow. The STAR-CD S/W used for the three dimensional steady state CFD analysis in a muffler. The Navier-Stokes Equation is solved with the SIMPLE method in a general cartesian coordinates system. Result of numerical simulation; Inlet and outlet temperature shown about ${\Delta}T=239K$, 216K, 202K at in the muffler. Heat transfer was progressed quickly by atmospheric temperature of muffler external at in the near wall.

  • PDF

Experimental and Numerical Investigation for NOx Reduction with Fuel Lean Reburning System (NOx저감을 위한 연료희박 재연소 기법의 실험 및 수치적 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Son, Hee;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.18-25
    • /
    • 2009
  • Fuel lean reburning method is very attractive way in comparison with conventional reburning method for reducing NOX. Meanwhile, the knowledge of the how flue gas re-circulated, temperature distribution and species concentration is crucial for the design and operation of an effective fuel lean reburning system. For this reason, numerical analysis of fuel lean reburning system is a very important and challenge task. In this work, the effect of fuel lean reburn system on NOX reduction has been experimentally and numerically conducted. Experimental study has been conducted with a 15kW lab scale furnace. Liquefied Petroleum Gas is used as main fuel and reburn fuel. To carry out numerical study, the finite-volume based commercial computational fluid dynamics (CFD) code FLUENT6.3 was used to simulate the reacting flow in a given laboratory furnace. Steady state, three dimensional analysis performed for turbulent reactive flow and radiative heat transfer in the furnace.

  • PDF

Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks

  • Bruno, L.;Khris, S.;Marcillat, J.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.315-332
    • /
    • 2001
  • Presented herein is a numerical study for evaluating the aerodynamic behaviour of equipped bridge deck sections. In the first part, the method adopted is described, in particular concerning turbulence models, meshing requirements and numerical approach. The validation of the procedure represents the aim of the second part of the paper: the results of the numerical simulation in case of two-dimensional, steady, incompressible, turbulent flow around a realistic bridge deck are compared to the data collected from wind-tunnel tests. In order to demonstrate the influence of the section details and of the partial streamlining of the deck geometry on its aerodynamic behaviour, in the third part of the paper the effect of the fairings and of each item of equipment of the section (such as central barriers, side railings and sidewalks) is evaluated. The study has been applied to the deck section of the Normandy cable-stayed bridge.

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

Distribution of the Reynolds Stress Tensor Inside Tip Leakage Vortex of a Linear Compressor Cascade (I) - Effect of Inlet Flow Angle - (선형 압축기 익렬에서 발생하는 익단 누설 와류내의 레이놀즈 응력 분포 (I) -입구 유동각 변화의 영향-)

  • Lee, Gong-Hee;Park, Jong-Il;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.902-909
    • /
    • 2004
  • A steady-state Reynolds averaged Navier-Stokes simulation was conducted to investigate the distribution of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) at a constant tip clearance size of $1\%$ blade span were considered. Classical methods of solid mechanics, applied to view the Reynolds stress tensor in the principal direction system, clearly showed that the high anisotropic feature of turbulent flow field was dominant at the outer part of tip leakage vortex near the suction side of the blade and endwall flow separation region, whereas a nearly isotropic turbulence was found at the center of tip leakage vortex. There was no significant difference in the anisotropy of the Reynolds normal stresses inside tip leakage vortex between the design and off-design condition.

Numerical Analysis on the Internal Flow Field Characteristics of Wind Tunnel According to Contraction Type (수축부 형상에 따른 풍동 내부유동장 특성에 대한 수치해석)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.5-12
    • /
    • 2017
  • The steady-state, incompressible and three-dimensional numerical analysis was carried out to investigate the internal flow fields characteristics according to wind tunnel contraction type. The turbulence model used in this study is a realizable $k-{\varepsilon}$ modified from the standard $k-{\varepsilon}$ model. As a results, the distribution of the axial mean velocity components along the central axis of the flow model is very similar to the ASME and BE types, and the cubic and cosine types. When the flow passes through the interior space of the analytical models, the flow resistance at the inlet of the plenum chamber is the largest at BS type contraction, but the smallest at cubic type contraction. The boundary layer thickness is the smallest in the cosine type contraction as the axial distance increases. The maximum turbulent kinetic energy in the test section is the smallest in the order of the contraction of cubic type and cosine type. Comprehensively, cubic type contraction is the best choice for wind tunnel performance, and cosine type contraction can be the next best solution.