• Title/Summary/Keyword: Turbulent Premixed Burner

Search Result 31, Processing Time 0.026 seconds

Prediction of Turbulent Premixed Flamefield in Bunsen Burner (Bunsen Buner 난류 예혼합 화염장의 해석)

  • Cho, Ji-Ho;Kim, Hoo-Joong;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

Numerical Modeling of Turbulent Swirling Premixed Lifted Flames (선회유동을 가지는 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames (석탄가스 난류선회유동 예혼합부상화염의 안정성 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames (미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구)

  • Choe, Gyeong-Min;Jang, In-Gap;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation (LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석)

  • Shin, Youngjun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame (난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리)

  • Ahn, Taekook;Lee, Daehoon;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

LES OF TURBULENT PREMIXED COMBUSTION FLAME AND LES APPLICATION FOR THE INDUSTRIAL COMBUSTOR DEVELOPMENT (난류 예혼합연소 화염의 LES 및 산업용 연소기 개발을 위한 LES 응용 해석 기술)

  • Park, Nam-Seob;Ryu, Jong-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.437-441
    • /
    • 2010
  • LES results of turbulent premixed combustion flows are introduced by using the dynamic sub-grid scale model based on G-equation describing the flame front propagation. The turbulent premixed combustion flows around bluff body and over backward facing step are analyzed to validate present formation. LES of swirling partially premixed combustion flame is also performed to conform the predictive capabilities of LES model and to prompt our understanding for the combustion flows over double cone swirl burner combustor by using CFD-ACE+ commercial code.

  • PDF

The Flow analysis and the Flame structure of Turbulent Premixed Flat Burner (난류예혼합 플랫버너의 유동해석과 화염구조)

  • Kim, Hun-Ju;Yun, Bong-Seok;Heo, Su-Bin;Park, Jae-Min;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.397-405
    • /
    • 2011
  • Hydrogen energy, as part of eco-friendly alternative energy, is made mostly through reforming of fossil fuels. The turbulent premixed combustion type of metal-fiber flat burner which is recently used in industry was tested in this paper. We measured the mean temperature distributions, CO, HC, $CO_2$ and $O_2$ concentrations to observe the flame structure and flame stability in some kind of experimental conditions. And also PIV and several flow analysis methods were compared to establish the numerical analysis model. The results of this paper will be the basis of the burner design of steam reformer.