• Title/Summary/Keyword: Turbulent Jet

Search Result 460, Processing Time 0.026 seconds

마일드 연소장 수치계산을 위한 화학반응기구의 예측성능 검토 (Investigation on the Prediction Performance of the Chemical Kinetics for the Numerical Simulation of MILD Combustion)

  • 김유정;오창보
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.341-344
    • /
    • 2012
  • The prediction performance of the chemical kinetics for the numerical simulation of MILD combustion was investigated. A wall-confined turbulent methane jet combustor was adopted as a configuration. Four chemical kinetics, such as a global 3-step, WD4, Skeletal, and DRM-19, were investigated, The air stream of the wall-confined MILD jet combustor was diluted with combustion products. It was found that the DRM-19 was optimal for the numerical simulation of the MILD combustion.

  • PDF

수직 상방으로 난류제트의 통계학적 특성에 관한 실험적 연구 (Experimental study of statistical characteristics of turbulent jet discharged vertically upward)

  • 이준식;이택식
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.320-328
    • /
    • 1981
  • Experimental study of a round. free air jet is accomplished using a crossed hot wire probe with a constant temperature hot wire anemometer. Mean velocity Profiles, Reynolds stresses, tubulent intensities, velocity probability densities and correlation functions are measured in the down tream region. These values are calculated and averaged inthe correlation and probability analyzer. The reults are interpreted by the output of te dual beam oscilloscope.

충돌제트에 의한 덕트내 사각발열체의 냉각특성에 관한 수치해석적 연구 (A Numerical Study on Cooling Characteristics by Impinging Jet at a Square Heating Element with Duct)

  • 윤정호;김시범;김동균;이치우;김지훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.42-48
    • /
    • 2005
  • Because Impinging jet has excellent heat & mass transfer characteristics. it has many advantages of cooling. drying. etc and widely applied at industrial fields. Therefore, there have been many experimental investigations and theoretical studies about Impinging jet. The present study is about a cooling characteristic by Impinging jet for a Square Plate on Duct and investigated this characteristic through three-dimensions numerical analysis, using FLUENT. As the result of this study, heat transfer effect is the most appropriate condition when the ratio of distance is 6 between nozzle exit diameter and heat source. diameter of duct is 90mm and height of duct is 60mm. In addition. under the influence of injected jet. stagnant fluid flow into free jet field and this affected the whole flow field. So the shape of duct is a important factor and the researcher confirmed the need of investigation about duct.

동축이중원관 분류에 있어서의 유동 특성에 관한 연구 (A Study on the Flow Characteristics in Double Coaxial Pipe Jets)

  • 신창환;김경훈
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.46-53
    • /
    • 1996
  • The present study is aiming at improving the performance of main nozzle of an air jet loom with a modified reed and auxiliary nozzles. The double coaxial pipe jets consisting of a central air jet and an annular air jet have been experimentally investigated. The duter jet has a potential core and a constant velocity. The inner jet through an inner long pipe is induced by the subatmospheric pressure near the inner nozzle edge, and the jet velocity of an inner pipe is always lower than that of a outer pipe. The static pressures of the main nozzle over a wide range of the nozzle tank pressure were measured, and the nozzle velocity and Mach numbers were analytically calculated. Experiment81 results indicate that the critical condition of Mach number of unity to occur at the two positions in a main nozzle; one of them is the needle tip and the other is the acceleration tube exit An increase in the tank pressure causes the critical throat condition to occur at the two positions above. The velocity of acceleration-tube exit is maximum at the critical length L* and flow patter in acceleration-tube over critical lengh remains unstable.

  • PDF

높이차가 존재하는 두 분류의 2상유동에 관한 연구 (Study on Two-Phase Flow generated by Two Jets with Height Difference)

  • 박상규;양희천;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.88-93
    • /
    • 2000
  • In this study, the mixing process of two-phase flow generated by two jets with height difference is analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid particles with air. The height difference between the main jet and the secondary jet is changed into three kinds(0, 32.5, 47.5mm). The velocity vector field, concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the height difference of two jets through the two nozzles increases, the solid particle recirculation zone and the dense zone in the combustion chamber become large. The solid particle concentration at the center of the combustion chamber gets dense because the particle velocity remains slow due to the existence of the solid particle recirculation zone. The particle concentration in the combustion chamber can also be influenced by the hight difference of two jets.

  • PDF

Ion Electrical and Optical Diagnostics of an Atmospheric Pressure Plasma Jet

  • Ha, Chang Seung;Shin, Jichul;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제24권1호
    • /
    • pp.16-21
    • /
    • 2015
  • The characteristics of an atmospheric pressure plasma jet (APPJ) in He discharge are measured with electrical and optical diagnostics methods. The discharge phenomenon in one cycle of the APPJ was diagnosed using intensified charge coupled device (ICCD) imaging. The gate mode images show that the propagation of plasma bullets happens only when the applied voltage on the inner conductor is positive. Moreover, the Schlieren image of the plasma jet shows that the laminar flow is changed into a turbulent flow when the plasma jet is turned on, especially when the gas flow rate increases.

비정상 $CH_4$/공기 제트 확산화염에 관한 수치모사 (Numerical Simulation of Unsteady $CH_4$/Air Jet Diffusion Flame)

  • 오창보;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.113-122
    • /
    • 2000
  • Dynamic structures of unsteady $CH_4$/Air jet diffusion flames with flame-vortex interaction were numerically investigated. A time-dependent, axisymmetric computational model was adopted for this calculation. Two step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including gravitational effect show that the large outer vortices and the small inner vortex street can be well simulated without any additional disturbances in the downstream of nozzle tip. It was found that the temperature and species concentrations had various values for the same mixture fraction in flame-vortex interaction region. This unsteady jet flame configuration accompanying flame-vortex interaction is expected to give good implications for the structure of turbulent flames.

  • PDF

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.

Insights on the rotation measure of the M87 jet on arc-second scales

  • Algaba, Juan-Carlos;Asada, Keiichi;Nakamura, Masanori
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.73.2-73.2
    • /
    • 2014
  • We investigate the rotation measure (RM) of the nearby low luminosity AGN M87 by using archival polarimetric VLA data at 8, 15, 22 and 43 GHz. For the first time, the RM properties of its jet are resolved at at arc-second scales. The distribution of the RM appears to be a gaussian with a mean value of ~200rad/m2 and the power spectrum follows a power law with index -2.5. A simple Kolmogorov model assuming a random turbulent magnetic fields extrinsic to the jet appears not to be adequate to explain the observed RM power spectra. On the other hand, underlying RM gradients possibly connected with the jet could be a possible interpretation.

  • PDF

충돌제트의 간격변화에 따른 발열블록 표면에서의 열전달 특성에 관한 수치해석 (Numerical Analysis on the Heat Transfer Characteristics of Multiple Slot Jets at the Surface of Protruding Heated Blocks)

  • 박시우;정인기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.229-237
    • /
    • 2003
  • The flow and heat transfer characteristics at the surface of two-dimensional protruding heated blocks using confined impingement multiple slot jets were computationally investigated Numerical predictions were made for round-edged nozzles at several nozzle-to-target plate spacings and jet-to-jet distances, with turbulent jet Reynolds numbers ranging from 2000 to 7800. The commercial finite-volume code FLUENT was used to solve the heat transfer characteristics and flow fields using a RNG $\textsc{k}-\varepsilon$ model. The computed heat transfer characteristics at the surface of heated blocks were in good qualitative agreement with previous experimental data The results of heat transfer characteristics on the surface of protruding heated blocks are important considerations in electronics Packaging design.